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Abstract. Since 2003, SPI and Debian use a new Condorcet-consistent single-winner election method for internal elections and referendums. In this paper, I will introduce this method, demonstrate that it satisfies e.g. Pareto, monotonicity, resolvability, independence of clones, reversal symmetry, Smith-IIA, Schwartz, and Woodall’s plurality criterion, and present an O(N^3) algorithm to calculate the winner, where N is the number of candidates.

1. Introduction

In 1997, I proposed to a large number of people who are interested in mathematical aspects of election methods a new method that satisfies anonymity, neutrality, homogeneity, Pareto, monotonicity, resolvability, independence of clones, reversal symmetry, Smith-IIA, and Schwartz. Furthermore, the version described in appendix 2 also satisfies Woodall’s plurality criterion. This method immediately attracted a lot of attention and very many enthusiastic supporters. Today, this method is promoted e.g. by Diana Galletly [1], Mathew Goldstein [2], Jobst Heitzig [3], Jean-Sébastien Lebacq [4], Anguo Ma [5], Raul Miller, Andrew Myers [6], Mike Ossipoff [7, 8], Russ Paielli [8], Norman Petry, Manoj Srivastava, Anthony Towns, and Jochen Voss [9] and it is analyzed e.g. in the websites of Blake Cretney [10], Steve Eppley [11], Eric Gorr [12], James Green-Armytage [13], Rob LeGrand [14], Richard Sabey [15], and Peter A. Taylor [16]. Today, this method is taught e.g. by James E. Falk of George Washington University and Thomas K. Yan of Cornell University [17]. In January 2003, the board of the “Software in the Public Interest” (SPI) project, a software developer organization with about 300 members, adopted this method unanimously [18]. In June 2003, the Debian project, a software developer organization with about 900 members, adopted this method with 144 against 16 votes [19, 20]; Debian is the largest and most well known non-commercial Linux distribution; the fact that today the proposed method is an integral part of Debian’s voting software (“Debian Vote Engine”, Devotee) means that this method is the standard election method in all Debian user groups (with several 10,000 members in total) and in many other Linux user groups, e.g. the “User Linux” project and the “Haifa Linux Club” (Haifux). Furthermore, this method is promoted e.g. by the “Leader of the Free World” (LFW) project [21], the Glasnost project [22], and the “L’Expérience Démocratique” (DemExp) project [23]. Therefore, a more detailed motivation and explanation of this method is overdue.

There has been some debate about an appropriate name for this method. Some people suggested names like “beatpath method”, “beatpath winner”, “path voting”, “path winner”, “goldfish”, “Schwartz sequential dropping” (SSD), and “cloneproof Schwartz sequential dropping” (CSSD or CpSSD). Brearley [25, 38] suggested names like “descending minimum gross score” (DminGS), “descending minimum augmented gross score” (DminAGS), and “descending minimum doubly augmented gross score” (DminDAGS), dependent on how the strength of a pairwise defeat is measured. Heitzig suggested names like “strong immunity from binary arguments” (SImA) and “sequential dropping towards a spanning tree” (SDST). In the French literature, names like “chaîne de victoires gagnante”, “descente séquentielle de Schwartz” (DSS), and “descente séquentielle de Schwartz insensible aux clones” were suggested. However, I prefer the name “Schulze method”, not because of academic arrogance, but because the other names do not refer to the method itself but to specific heuristics for implementing it, and so may mislead readers into believing that no other method for implementing it is possible. In my opinion, although it is advantageous to have an intuitive and convincing heuristic, in the end only the properties of the method are relevant.

I have already found some implementations of my method in the Internet. Unfortunately, most implementations that I have seen were inefficient because the programmers have not understood the Floyd algorithm so that the implementations had an exponential runtime although the winner of this method can be calculated in a runtime of O(N^3), where 1 < N < ∞ is the number of candidates.

It is presumed that each voter casts a partial (i.e. a not necessarily complete) ranking of all candidates. Suppose (1) “A >v B” means “voter v strictly prefers candidate A to candidate B” and (2) “A =v B” means “voter v is indifferent between candidate A and candidate B”. Then voter v casts a partial ranking when the following six conditions are satisfied. Otherwise, voter v casts cyclic preferences.

1.
For each pair of candidates A and B exactly

one of the following three statements is true:

A =v B, A >v B, B >v A.

2.
A =v A for every candidate A.

3.
( A >v B and B >v C )  (   A >v C.

4.
( A =v B and B >v C )  (   A >v C.

5.
( A >v B and B =v C )  (   A >v C.

6.
( A =v B and B =v C )  (   A =v C.

However, it is not presumed that each voter casts a complete ranking. A complete ranking is a partial ranking with the following additional property:

7.
A and B are not identical. (   ( A >v B or B >v A ).

Therefore, a possible way to implement the proposed method is to give to each voter a complete list of all candidates and to ask each voter to rank these candidates in order of preference. The individual voter may give the same preference to more than one candidate and he may keep candidates unranked. When a given voter does not rank all candidates then it is presumed that this voter strictly prefers all ranked candidates to all not ranked candidates and that this voter is indifferent between all not ranked candidates.

Heitzig [30] suggests that the Schulze method is the best method when the individual voter is allowed to cast not only incomplete but even cyclic preferences. Heitzig suggests (a) that for each of the    N∙(N-1)/2 pairs of two different candidates A and B voter v is asked whether he strictly prefers candidate A to candidate B (“A >v B”), strictly prefers candidate B to candidate A (“B >v A”), is indifferent between candidate A and candidate B (“A =v B”) or wants to abstain (“A ?v B”) and (b) that voter v is allowed to answer each of these   N∙(N-1)/2 questions independently so that he can e.g. simultaneously strictly prefer candidate A to candidate B, strictly prefer candidate B to candidate C, and strictly prefer candidate C to candidate A. However, in my opinion, the question whether the individual voter should be allowed to cast cyclic preferences and the question which single-winner election method is most suitable are two independent questions.

Anonymity means that all voters are treated equally. Neutrality means that all candidates are treated equally. Homogeneity means that the result only depends on the proportion of ballots of each type, not on their absolute number. Majority for solid coalitions says that when a majority of the voters strictly prefers every candidate of a given set of candidates to every candidate outside this set of candidates then the winner must be chosen from this set.

Suppose that d[X,Y] is the number of voters who strictly prefer candidate X to candidate Y. Then a Condorcet candidate is a candidate A with d[A,B] > d[B,A] for every other candidate B. A single-winner election method is Condorcet-consistent (i.e. satisfies the Condorcet criterion) if whenever a Condorcet candidate exists this candidate is elected with certainty. The Smith set is the smallest non-empty set of candidates with d[A,B] > d[B,A] for each candidate A of this set and each candidate B outside this set [35]. Smith says that the winner must be chosen from the Smith set. Smith-IIA (where IIA means Independence from Irrelevant Alternatives) says that adding a candidate who is not in the new Smith set must not change the probability that a given and already running candidate is elected. Smith-IIA implies Smith. Smith implies the majority criterion for solid coalitions and the Condorcet criterion. Unfortunately, compliance with the Condorcet criterion implies violation of other desired criteria like consistency [39], participation [32], mono-raise-random, mono-sub-top, mono-raise-delete, mono-sub-plump, later-no-harm, and later-no-help [37].

A chain from candidate A to candidate B is an ordered set of candidates C(1),...,C(n) with the following three properties:
1.
C(1) is identical to A.

2.
C(n) is identical to B.

3.
For each i = 1,...,(n-1): d[C(i),C(i+1)] > d[C(i+1),C(i)].

A Schwartz candidate is a candidate A who has chains at least to every other candidate B who has a chain to candidate A. The Schwartz set is the set of all Schwartz candidates. Schwartz says that the winner must be a Schwartz candidate [34]. Also Schwartz implies Smith.

In section 2, the Schulze method is defined. In section 3, well-definedness of this method is proven. In section 4, I present an implementation with a runtime of O(N^3). In section 5, I prove that this method satisfies Pareto, monotonicity, resolvability, independence of clones, and reversal symmetry. From the definition of the Schulze method, it is clear that this method satisfies anonymity, neutrality, homogeneity, Smith-IIA, and Schwartz. In section 6, I demonstrate that this method violates participation and independence from Pareto-dominated alternatives.

In terms of satisfied and violated criteria, Tideman’s ranked pairs method [36, 41] and Heitzig’s river method are very similar to the proposed method. However, in appendix 1, I demonstrate that the proposed method is not identical to the other methods. Tideman’s ranked pairs method is also known as “minimize thwarted majorities” (MTM), “maximize affirmed majorities” (MAM), and “maximum majority voting” (MMV).

In appendix 2, I explain why the strength of a pairwise defeat should be measured primarily by the absolute number of votes for the winner of this pairwise defeat. In appendix 3, I explain how the proposed method can be interpreted as a method where successively the weakest pairwise defeats are “eliminated.”

The Kemeny score of a complete ranking of all candidates is
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 | candidate A is ranked higher than candidate B ).

Goldstein [2] suggests that both the Schulze ranking and the Tideman ranking should be calculated and that then the winner should be the top-ranked candidate of that of these two rankings that has a higher Kemeny score. He calls this suggestion “Condorcet with dual dropping”. I recommend not to follow Goldstein’s suggestion since it violates independence of clones. However, I suggest that the Tideman ranking should be used as an additional tie-breaker for those situations where the Schulze method does not find a unique winner. The resulting version is described in appendix 4.

In referendums, proposals sometimes have to fulfill supermajority requirements to qualify; how such supermajority requirements can be incorporated into the Schulze method is explained in appendix 5. In appendix 6, I explain how the electoral college can be combined with the Schulze method.

2. Definition of the Schulze Method

Stage 1:

Suppose that d[A,B] is the number of voters who strictly prefer candidate A to candidate B.

A path from candidate A to candidate B is an ordered set of candidates C(1),...,C(n) with the following two properties:
1.
C(1) is identical to A.

2.
C(n) is identical to B.

The strength of the path C(1),...,C(n) is

min { d[C(i),C(i+1)] - d[C(i+1),C(i)] | i = 1,...,(n-1) }.

Thus a chain from candidate A to candidate B, as defined in the introduction, is simply a path with positive strength.

p[A,B] : = max { min { d[C(i),C(i+1)] - d[C(i+1),C(i)]

| i = 1,...,(n-1) }

| C(1),...,C(n) is a path from candidate A to candidate B }.

In other words: p[A,B] is the strength of the strongest path from candidate A to candidate B.

Candidate A is a potential winner if and only if p[A,B] ≥ p[B,A] for every other candidate B.

When p[A,B] > p[B,A], then we say: “Candidate A disqualifies candidate B”.

A Schulze ranking is a complete ranking of all candidates with the following property: p[A,B] > p[B,A]  (  Candidate A is ranked higher than candidate B.

Stage 2:

If there is only one potential winner, then this potential winner is the unique winner. If there is more than one potential winner, then a Tie-Breaking Ranking of the Candidates (TBRC) is calculated as follows:

a)
Pick a random ballot and use its rankings; consider ties as unsorted with regard to each other.

b)
Continue picking ballots randomly from those that have not yet been picked. When you find one that orders previously unsorted candidates, use the ballot to sort them. Do not change the order of the already sorted.

c)
If you go through all ballots, and some candidates are still not sorted, order them randomly.

(When the bylaws require that the chairperson decides in the case of a tie, then the rules to create the TBRC have to be modified in such a manner that it is guaranteed that the ballot of the chairperson is always chosen first.) The winner is that potential winner who is ranked highest in this TBRC.

This is a shorter description of the Schulze method:

A path from candidate X to candidate Y of strength z is an ordered set of candidates C(1),...,C(n) with the following properties:
1.
C(1) is identical to X.

2.
C(n) is identical to Y.

3. 
For i = 1,...,(n-1): d[C(i),C(i+1)] - d[C(i+1),C(i)] ≥ z.

If there is a path from candidate A to candidate B of strength z and there is no path from candidate B to candidate A of strength z, then candidate B is elected with zero probability.

3. Well-Definedness

On first view, it is not clear whether the Schulze method is well defined. It seems to be possible that candidates disqualify each other in such a manner that there is no candidate A with p[A,B] ≥ p[B,A] for every other candidate B. However, the following proof demonstrates that path defeats are transitive. That means: When candidate A disqualifies candidate B and when candidate B disqualifies candidate C, then also candidate A disqualifies candidate C.

Claim: ( p[A,B] > p[B,A] and p[B,C] > p[C,B] )  (   p[A,C] > p[C,A].

Proof:

Suppose

(1)
p[A,B] > p[B,A] and

(2)
p[B,C] > p[C,B].

The following statements are valid:

(3)
min { p[A,B]; p[B,C] } ≤ p[A,C].

(4)
min { p[A,C]; p[C,B] } ≤ p[A,B].

(5)
min { p[B,A]; p[A,C] } ≤ p[B,C].

(6)
min { p[B,C]; p[C,A] } ≤ p[B,A].

(7)
min { p[C,A]; p[A,B] } ≤ p[C,B].

(8)
min { p[C,B]; p[B,A] } ≤ p[C,A].

For example: If min { p[A,B]; p[B,C] } was strictly larger than p[A,C], then this would be a contradiction to the definition of p[A,C] since there would be a route from candidate A to candidate C via candidate B with a strength of more than p[A,C]; and if this route was not itself a path (because it passed through some candidates more than once) then some subset of its links would form a path from candidate A to candidate C with a strength of more than p[A,C].

Case 1: Suppose

(9a)
p[A,B] ≥ p[B,C].

Combining (2) and (9a) gives:

(10a)
p[A,B] > p[C,B].

Combining (7) and (10a) gives:

(11a)
p[C,A] ≤ p[C,B].

Combining (3) and (9a) gives:

(12a)
p[B,C] ≤ p[A,C].

Combining (11a), (2), and (12a) gives:

(13a)
p[C,A] ≤ p[C,B] < p[B,C] ≤ p[A,C].

Case 2: Suppose

(9b)
p[A,B] < p[B,C].

Combining (1) and (9b) gives:

(10b)
p[B,C] > p[B,A].

Combining (6) and (10b) gives:

(11b)
p[C,A] ≤ p[B,A].

Combining (3) and (9b) gives:

(12b)
p[A,B] ≤ p[A,C].

Combining (11b), (1), and (12b) gives:

(13b)
p[C,A] ≤ p[B,A] < p[A,B] ≤ p[A,C].

Therefore, the relation defined by “p[A,B] > p[B,A] ( Candidate A is ranked higher than candidate B” is transitive.

4. Implementation

The strength of the strongest path p[i,j] from candidate i to candidate j can be calculated with the Floyd algorithm [29]. The runtime to calculate the strengths of all paths is O(N^3). It cannot be said frequently enough that the order of the indices in the triple-loop of the Floyd algorithm is not irrelevant.

Input:
d[i,j] with i ≠ j is the number of voters who strictly prefer candidate i to candidate j.

Output: “w[i] = true” means that candidate i is a potential winner.

“w[i] = false” means that candidate i is not a potential winner.

for i : = 1 to N do

for j : = 1 to N do

if ( i ≠ j ) then

p[i,j] : = d[i,j] - d[j,i] ;

for i : = 1 to N do

for j : = 1 to N do

if ( i ≠ j ) then

for k : = 1 to N do

if ( i ≠ k ) then

if ( j ≠ k ) then

{

s : = min { p[j,i], p[i,k] } ;

if ( p[j,k] < s ) then

p[j,k] : = s ;

}

for i : = 1 to N do

w[i] : = true ;

for i : = 1 to N do

for j : = 1 to N do

if ( i ≠ j ) then

if ( p[j,i] > p[i,j] ) then

w[i] : = false ;

5. Satisfied Criteria

5.1. Pareto

Pareto says that when no voter strictly prefers candidate B to candidate A ( i.e. d[B,A] = 0 ) and at least one voter strictly prefers candidate A to candidate B ( i.e. d[A,B] > 0 ) then candidate B must be elected with zero probability.

The Schulze method satisfies Pareto.

Proof:

Case 1:

If BA is already the strongest path from candidate B to candidate A, then p[B,A] = d[B,A] - d[A,B] < 0. Therefore, candidate A disqualifies candidate B because p[A,B] ≥ d[A,B] - d[B,A] > 0, so that p[A,B] > p[B,A].

Case 2:

Suppose that B,C(1),...,C(n),A is the strongest path from candidate B to candidate A. As every voter who strictly prefers candidate B to candidate C(1) also necessarily strictly prefers candidate A to candidate C(1), we get d[A,C(1)] ≥ d[B,C(1)]. As every voter who strictly prefers candidate C(1) to candidate A also necessarily strictly prefers candidate C(1) to candidate B, we get d[C(1),B] ≥ d[C(1),A]. Therefore, d[A,C(1)] - d[C(1),A] ≥ d[B,C(1)] - d[C(1),B]. For the same reason, we get d[C(n),B] - d[B,C(n)] ≥ d[C(n),A] - d[A,C(n)]. Therefore, the path A,C(1),...,C(n),B is at least as strong as the path B,C(1),...,C(n),A. In so far as B,C(1),...,C(n),A is the strongest path from candidate B to candidate A by presumption, we get p[A,B] ≥ p[B,A].

Suppose that candidate B is a potential winner. Then also candidate A is a potential winner. Proof:

Suppose that B,C(1),...,C(n),X is the strongest path from candidate B to candidate X. Then, A,C(1),...,C(n),X is a path, but not necessarily the strongest path, from candidate A to candidate X with at least the same strength because d[A,C(1)] - d[C(1),A] ≥ d[B,C(1)] - d[C(1),B]. Therefore, p[A,X] ≥ p[B,X] for every candidate X other than candidate A or candidate B.

Suppose that X,C(1),...,C(n),A is the strongest path from candidate X to candidate A. Then, X,C(1),...,C(n),B is a path, but not necessarily the strongest path, from candidate X to candidate B with at least the same strength because d[C(n),B] - d[B,C(n)] ≥ d[C(n),A] - d[A,C(n)]. Therefore, p[X,B] ≥ p[X,A] for every candidate X other than candidate A or candidate B.

Since candidate B is a potential winner, p[B,X] ≥ p[X,B] for every other candidate X. With p[A,X] ≥ p[B,X], p[B,X] ≥ p[X,B], and p[X,B] ≥ p[X,A], we get p[A,X] ≥ p[X,A] for every other candidate X. Therefore, also candidate A is a potential winner.

Therefore, when no voter strictly prefers candidate B to candidate A and at least one voter strictly prefers candidate A to candidate B then when candidate B is a potential winner also candidate A is a potential winner. Therefore, candidate B cannot be elected at stage 1 of the Schulze method. Candidate B cannot be elected at stage 2, either, since candidate A is necessarily ranked above candidate B in the TBRC.

5.2. Monotonicity

Monotonicity says that when some voters rank candidate A higher without changing the order in which they rank the other candidates relatively to each other then the probability that candidate A is elected must not decrease. Monotonicity is also known as non-negative responsiveness and mono-raise.
The Schulze method satisfies monotonicity.

Proof:

Suppose candidate A was a potential winner. Then pold[A,B] ≥ pold[B,A] for every other candidate B.

Part 1:

Suppose some voters rank candidate A higher without changing the order in which they rank the other candidates. Then dnew[A,X] ≥ dold[A,X] and dnew[X,A] ≤ dold[X,A] for every other candidate X. dnew[X,Y] = dold[X,Y] when neither candidate X nor candidate Y is identical to candidate A. Therefore dnew[A,X] - dnew[X,A] ≥ dold[A,X] - dold[X,A] for every other candidate X. And dnew[X,Y] - dnew[Y,X] = dold[X,Y] - dold[Y,X] when neither candidate X nor candidate Y is identical to candidate A.

For every candidate B other than candidate A the value p[A,B] can only increase but not decrease with d[A,X] - d[X,A] since only AX but not XA can be in the strongest path from candidate A to candidate B and the value p[B,A] can only decrease but not increase with d[A,X] - d[X,A] since only XA but not AX can be in the strongest path from candidate B to candidate A. Therefore pnew[A,B] ≥ pold[A,B] and pnew[B,A] ≤ pold[B,A]. Therefore pnew[A,B] ≥ pnew[B,A] so that candidate A is still a potential winner.

Part 2:
Suppose that candidate E is not identical to candidate A. It remains to be proven that when candidate E was not a potential winner before then he is still not a potential winner. Suppose that candidate E was not a potential winner. Then there must have been a candidate F other than candidate E with

(1)
pold[F,E] > pold[E,F].

Then, of course, also pnew[F,E] > pnew[E,F] is valid unless XA was a weakest link in the strongest path from candidate F to candidate E and/or AY was the weakest link in the strongest path from candidate E to candidate F. Without loss of generality, we can presume that candidate F is not identical to candidate A and that

(2)
pold[A,E] = pold[E,A]

because otherwise with pold[A,E] > pold[E,A] we would immediately get pnew[A,E] > pnew[E,A] (because of the considerations in Part 1) so that we would immediately get that candidate E is still not a potential winner. Since candidate A was a potential winner, we get

(3)
pold[A,F] ≥ pold[F,A].

The following statements are valid for the same reason as in section 3:

(4)
min { pold[A,E]; pold[E,F] } ≤ pold[A,F].

(5)
min { pold[A,F]; pold[F,E] } ≤ pold[A,E].

(6)
min { pold[E,A]; pold[A,F] } ≤ pold[E,F].

(7)
min { pold[E,F]; pold[F,A] } ≤ pold[E,A].

(8)
min { pold[F,A]; pold[A,E] } ≤ pold[F,E].

(9)
min { pold[F,E]; pold[E,A] } ≤ pold[F,A].

Case 1:
Suppose XA was a weakest link in the strongest path from candidate F to candidate E. Then

(10a)
pold[F,E] = pold[F,A] and

(11a)
pold[A,E] ≥ pold[F,E].

Now (3), (10a), and (1) give

(12a)
pold[A,F] ≥ pold[F,A] = pold[F,E] > pold[E,F],

while (2), (11a), and (1) give

(13a)
pold[E,A] = pold[A,E] ≥ pold[F,E] > pold[E,F].

But (12a) and (13a) together contradict (6).

Case 2:
Suppose AY was the weakest link in the strongest path from candidate E to candidate F. Then

(10b)
pold[E,F] = pold[A,F] and

(11b)
pold[E,A] > pold[E,F].

Now (11b), (10b), and (3) give

(12b)
pold[E,A] > pold[E,F] = pold[A,F] ≥ pold[F,A],

while (1), (10b), and (3) give

(13b)
pold[F,E] > pold[E,F] = pold[A,F] ≥ pold[F,A].

But (12b) and (13b) together contradict (9).

Conclusion: When some voters rank candidate A higher without changing the order in which they rank the other candidates relatively to each other, then (a) when candidate A was a potential winner candidate A is still a potential winner and (b) every other candidate E who was not a potential winner is still not a potential winner and (c) candidate A can only increase in the TBRC while the positions of the other candidates are not changed relatively to each other. Therefore, the probability that candidate A is elected cannot decrease.

5.3. Resolvability

An election method is resolvable if for every given number of candidates the proportion of profiles that give rise to a situation without a candidate who is elected with certainty tends to zero as the number of voters in the profile tends to infinity.

The Schulze method is resolvable.

Proof:

We will prove that at least in those cases in which there are no pairwise ties and there are no pairwise defeats of equal strength there is a unique winner.

Suppose that there is no unique winner. Suppose that candidate A and candidate B are potential winners. Then:

(1)
p[A,B] = p[B,A].

Suppose that there are no pairwise ties and that there are no pairwise defeats of equal strength. Then p[A,B] = p[B,A] means that the weakest link in the strongest path from candidate A to candidate B and the weakest link in the strongest path from candidate B to candidate A must be the same link, say CD.

As the weakest link of the strongest path from candidate B to candidate A is CD, we get:

(2)
p[D,A] > p[B,A].

As the weakest link of the strongest path from candidate A to candidate B is CD, we get:

(3)
p[A,D] = p[A,B].

With (2), (1), and (3) we get:

(4)
p[D,A] > p[B,A] = p[A,B] = p[A,D]

which contradicts the presumption that candidate A is a potential winner.

5.4. Independence of Clones

An election method is independent of clones if the following holds:

Suppose candidate D is replaced by a set of candidates D(1),...,D(m) in such a manner that for every candidate D(i) in this set, for every candidate F outside this set, and for every voter v the following two statements are valid:

(a) v strictly preferred D to F  (  v strictly prefers D(i) to F.

(b) v strictly preferred F to D  (  v strictly prefers F to D(i).

If candidate D and candidate E were two different candidates, then replacing candidate D by a set of candidates D(1),...,D(m) in the manner described above must not increase the probability that candidate E is elected. If candidate D and candidate E were two different candidates and (1) there was at least one voter who either strictly preferred candidate D to candidate E or strictly preferred candidate E to candidate D or (2) candidate D was elected with zero probability, then replacing candidate D by a set of candidates D(1),...,D(m) in the manner described above must not change the probability that candidate E is elected.

The Schulze method is independent of clones.

Proof:

Suppose that candidate D is replaced by a set of candidates D(1),...,D(m) in the manner described above. Then dnew[A,D(i)] = dold[A,D] for every candidate A outside the set D(1),...,D(m) and for every i = 1,...,m. And dnew[D(i),B] = dold[D,B] for every candidate B outside the set D(1),...,D(m) and for every i = 1,...,m.

(1) Case 1: Suppose that the strongest path C(1),...,C(n) from candidate A to candidate B did not contain candidate D. Then C(1),...,C(n) is still a path from candidate A to candidate B with the same strength. Therefore: pnew[A,B] ≥ pold[A,B].

Case 2: Suppose that the strongest path C(1),...,C(n) from candidate A to candidate B contained candidate D. Then C(1),...,C(n) with D replaced by an arbitrarily chosen candidate D(i) is still a path from candidate A to candidate B with the same strength. Therefore: pnew[A,B] ≥ pold[A,B].

(2) Case 1: Suppose that the strongest path C(1),...,C(n) from candidate A to candidate B does not contain candidates of the set D(1),...,D(m). Then C(1),...,C(n) was a path from candidate A to candidate B with the same strength. Therefore: pold[A,B] ≥ pnew[A,B].

Case 2: Suppose that the strongest path C(1),...,C(n) from candidate A to candidate B contains some candidates of the set D(1),...,D(m). Then C(1),...,C(n) where the part of this path from the first occurrence of a candidate of the set D(1),...,D(m) to the last occurrence of a candidate of the set D(1),...,D(m) is replaced by candidate D was a path from candidate A to candidate B with at least the same strength. Therefore: pold[A,B] ≥ pnew[A,B].

With (1) and (2), we get: pnew[A,B] = pold[A,B].

When we set A ≡ D in (1) and (2), we get: pnew[D(i),B] = pold[D,B] for every candidate B outside the set D(1),...,D(m) and for every i = 1,...,m.

When we set B ≡ D in (1) and (2), we get: pnew[A,D(i)] = pold[A,D] for every candidate A outside the set D(1),...,D(m) and for every i = 1,...,m.

Suppose candidate A, who is not identical to candidate D, was a potential winner, then pold[A,B] ≥ pold[B,A] for every other candidate B; because of the above considerations we get pnew[A,B] ≥ pnew[B,A] for every other candidate B; therefore, candidate A is still a potential winner. Suppose candidate B, who is not identical to candidate D, was not a potential winner, then pold[B,A] < pold[A,B] for at least one other candidate A; because of the above considerations we get pnew[B,A] < pnew[A,B] for at least this other candidate A; therefore, candidate B is still not a potential winner.

Presumption 1 in the definition of independence of clones guarantees that at least in those situations in which the TBRC has to be used to choose from the candidates D(1),...,D(m),E   (a) candidate E is ranked above each of the candidates D(1),...,D(m) when he was originally ranked above candidate D resp. (b) candidate E is ranked below each of the candidates D(1),...,D(m) when he was originally ranked below candidate D. Therefore, replacing candidate D by a set of candidates D(1),...,D(m) can neither change whether candidate E is a potential winner nor, when the TBRC has to be used, where this candidate is ranked in the TBRC.

5.5. Reversal Symmetry

Suppose that there are at least 2 candidates. Then reversal symmetry says that when candidate A was elected with certainty then when the individual preferences of each voter are inverted then candidate A must be elected with zero probability.

The Schulze method satisfies reversal symmetry.

Proof:

Suppose candidate A was elected with certainty. Then one of the following two statements must have been valid:

1.
Candidate A was the unique winner.

2.
Candidate A was not a unique winner, but a potential winner with dold[A,X] > 0 and dold[X,A] = 0 for every other potential winner X.

Case 1:
Suppose candidate A was the unique winner. Then there must have been at least one other candidate B with pold[A,B] > pold[B,A]. (Since the relation defined by pold[X,Y] > pold[Y,X] is transitive there must have been at least one candidate B other than candidate A with pold[B,E] ≥ pold[E,B] for every candidate E other than candidate A or candidate B. Since candidate A was the unique winner and since no candidate other than candidate A has disqualified candidate B, candidate A must have disqualified candidate B, i.e. pold[A,B] > pold[B,A].)

When the individual preferences of each voter are inverted then dnew[Y,X] = dold[X,Y] for each pair XY of candidates. When C(1),...,C(n) was a path from candidate X to candidate Y of strength Z then C(n),...,C(1) is a path from candidate Y to candidate X of strength Z. Therefore, pnew[Y,X] = pold[X,Y] for each pair XY of candidates. Therefore, pnew[B,A] > pnew[A,B] so that candidate B disqualifies candidate A.

Case 2:
Suppose candidate A was not a unique winner, but a potential winner with dold[A,X] > 0 and dold[X,A] = 0 for every other potential winner X.

Suppose candidate B was another potential winner. When the individual preferences of each voter are inverted then dnew[B,A] = dold[A,B] > 0 and dnew[A,B] = dold[B,A] = 0. Therefore, as the Schulze method satisfies Pareto, candidate A is elected with zero probability.

6. Violated Criteria

6.1. Uncovered Set

Candidate X is in the uncovered set if and only if for every other candidate Y at least one of the following two statements is valid [29]:

1. d[X,Y] ≥ d[Y,X].

2. There is a candidate Z with d[X,Z] ≥ d[Z,X] and d[Z,Y] ≥ d[Y,Z].

It is a very desirable property that the winner is always chosen from the uncovered set because many theories get to the conclusion that under sophisticated voting the winner is always a candidate of the uncovered set or a strict refinement of the uncovered set like the Banks set [24] or Dutta’s minimal covering set [28]. However, the following example demonstrates that the Schulze method does not guarantee that the winner is always chosen from the uncovered set.

Example 1:

2
ABCD

2
ADBC

2
BCDA

3
CDAB

1
DBCA

The matrix d of pairwise defeats looks as follows:

	
	d[*,A]
	d[*,B]
	d[*,C]
	d[*,D]

	d[A,*]
	---
	7
	4
	4

	d[B,*]
	3
	---
	7
	4

	d[C,*]
	6
	3
	---
	7

	d[D,*]
	6
	6
	3
	---


The matrix p of the path strengths looks as follows:

	
	p[*,A]
	p[*,B]
	p[*,C]
	p[*,D]

	p[A,*]
	---
	4
	4
	4

	p[B,*]
	2
	---
	4
	4

	p[C,*]
	2
	2
	---
	4

	p[D,*]
	2
	2
	2
	---


Candidate A is the unique winner since he is the only candidate with p[A,X] ≥ p[X,A] for every other candidate X. However, the uncovered set consists only of the candidates B, C, and D.

6.2. Participation
Consistency says that when candidate A is elected with certainty both in situation 1 and in situation 2 then he must also be elected with certainty when the ballots of situation 1 are added to the ballots of situation 2 [39]. Participation says that adding a set of identical ballots on which every candidate of a given set of candidates is strictly preferred to every candidate outside this set should not decrease the probability that the winner is chosen from this set [31]. mono-add-top says that adding a set of identical ballots on which candidate A is strictly preferred to every other candidate should not decrease the probability that candidate A is elected; mono-remove-bottom says that adding a set of identical ballots on which every candidate is strictly preferred to candidate B should not increase the probability that candidate B is elected [33, 37]. Participation implies mono-add-top and mono-remove-bottom. The following example demonstrates that the Schulze method violates consistency, participation, mono-add-top, and mono-remove-bottom. The basic idea for this example came from Blake Cretney.

Example 2:

4
ADEBCF

2
BAEFCD

2
BFADEC

4
BFECDA

14
DECABF

8
ECDBFA

18
FABCDE

The matrix d of pairwise defeats looks as follows:

	
	d[*,A]
	d[*,B]
	d[*,C]
	d[*,D]
	d[*,E]
	d[*,F]

	d[A,*]
	---
	36
	26
	26
	26
	20

	d[B,*]
	16
	---
	30
	26
	26
	34

	d[C,*]
	26
	22
	---
	32
	18
	26

	d[D,*]
	26
	26
	20
	---
	38
	26

	d[E,*]
	26
	26
	34
	14
	---
	28

	d[F,*]
	32
	18
	26
	26
	24
	---


The matrix p of the path strengths looks as follows:

	
	p[*,A]
	p[*,B]
	p[*,C]
	p[*,D]
	p[*,E]
	p[*,F]

	p[A,*]
	---
	20
	8
	8
	8
	16

	p[B,*]
	12
	---
	8
	8
	8
	16

	p[C,*]
	4
	4
	---
	12
	12
	4

	p[D,*]
	4
	4
	16
	---
	24
	4

	p[E,*]
	4
	4
	16
	12
	---
	4

	p[F,*]
	12
	12
	8
	8
	8
	---


Candidate A is the unique winner since he is the only candidate with p[A,X] ≥ p[X,A] for every other candidate X. However, when 3 AEFCBD ballots are added then the matrix d of pairwise defeats looks as follows:

	
	d[*,A]
	d[*,B]
	d[*,C]
	d[*,D]
	d[*,E]
	d[*,F]

	d[A,*]
	---
	39
	29
	29
	29
	23

	d[B,*]
	16
	---
	30
	29
	26
	34

	d[C,*]
	26
	25
	---
	35
	18
	26

	d[D,*]
	26
	26
	20
	---
	38
	26

	d[E,*]
	26
	29
	37
	17
	---
	31

	d[F,*]
	32
	21
	29
	29
	24
	---


Now, the matrix p of the path strengths looks as follows:

	
	p[*,A]
	p[*,B]
	p[*,C]
	p[*,D]
	p[*,E]
	p[*,F]

	p[A,*]
	---
	23
	5
	5
	5
	13

	p[B,*]
	9
	---
	5
	5
	5
	13

	p[C,*]
	7
	7
	---
	15
	15
	7

	p[D,*]
	7
	7
	19
	---
	21
	7

	p[E,*]
	7
	7
	19
	15
	---
	7

	p[F,*]
	9
	9
	5
	5
	5
	---


Now, candidate D is the unique winner since he is the only candidate with p[D,X] ≥ p[X,D] for every other candidate X. Thus the 3 AEFCBD voters change the winner from candidate A to candidate D.

For the sake of completeness: It has been proven that Condorcet and consistency are incompatible [39]. It has been proven that Condorcet and participation are incompatible [32]. There is no single-winner election method that has been proven to satisfy mono-add-top, Condorcet, and majority for solid coalitions [33, 37]. There is no single-winner election method that has been proven to satisfy mono-remove-bottom, Condorcet, and majority for solid coalitions [33, 37].

6.3.
Independence from

Pareto-Dominated Alternatives

Suppose that candidate Z is added with d[A,Z] > 0 and d[Z,A] = 0 for at least one already running candidate A. Then independence from Pareto-dominated alternatives (IPDA) says that the probability that a given and already running candidate is elected must not change. The following example demonstrates that the Schulze method is not independent from Pareto-dominated alternatives [11].
Example 3:

2
ADBEC

9
BADEC

3
BDECA

5
CABDE

5
CADEB

6
DECAB

The matrix d of pairwise defeats looks as follows:

	
	d[*,A]
	d[*,B]
	d[*,C]
	d[*,D]
	d[*,E]

	d[A,*]
	---
	18
	11
	21
	21

	d[B,*]
	12
	---
	14
	17
	19

	d[C,*]
	19
	16
	---
	10
	10

	d[D,*]
	9
	13
	20
	---
	30

	d[E,*]
	9
	11
	20
	0
	---


The matrix p of the path strengths looks as follows:

	
	p[*,A]
	p[*,B]
	p[*,C]
	p[*,D]
	p[*,E]

	p[A,*]
	---
	6
	10
	12
	12

	p[B,*]
	8
	---
	8
	8
	8

	p[C,*]
	8
	6
	---
	8
	8

	p[D,*]
	8
	6
	10
	---
	30

	p[E,*]
	8
	6
	10
	8
	---


Candidate B is the unique winner since he is the only candidate with p[B,X] ≥ p[X,B] for every other candidate X. However, every voter strictly prefers candidate D to candidate E and if candidate E did not run the matrix p of the path strengths would look as follows:

	
	p[*,A]
	p[*,B]
	p[*,C]
	p[*,D]

	p[A,*]
	---
	6
	10
	12

	p[B,*]
	4
	---
	4
	4

	p[C,*]
	8
	6
	---
	8

	p[D,*]
	8
	6
	10
	---


Now, candidate A is the unique winner since he is the only candidate with p[A,X] ≥ p[X,A] for every other candidate X. Thus, although every voter strictly prefers candidate D to candidate E, candidate E changes the winner from candidate A to candidate B.

Appendix 1:
Tideman’s Ranked Pairs Method

and Heitzig’s River Method

Tideman’s ranked pairs method [36, 41] and Heitzig’s river method are very similar to the Schulze method in terms of satisfied and violated criteria. (Exception: Heitzig’s river method satisfies IPDA.) However, the following example demonstrates that these methods are not identical.

Example 4:

6
ACDBE

2
AECBD

7
AECDB

3
BAECD

4
BECAD

7
CBEDA

8
DBAEC

4
DCBEA

5
DEACB

4
DECBA

The matrix d of pairwise defeats looks as follows:

	
	d[*,A]
	d[*,B]
	d[*,C]
	d[*,D]
	d[*,E]

	d[A,*]
	---
	20
	31
	22
	26

	d[B,*]
	30
	---
	15
	16
	32

	d[C,*]
	19
	35
	---
	29
	17

	d[D,*]
	28
	34
	21
	---
	27

	d[E,*]
	24
	18
	33
	23
	---


The matrix p of the path strengths looks as follows:

	
	p[*,A]
	p[*,B]
	p[*,C]
	p[*,D]
	p[*,E]

	p[A,*]
	---
	12
	12
	8
	12

	p[B,*]
	10
	---
	14
	8
	14

	p[C,*]
	10
	20
	---
	8
	14

	p[D,*]
	10
	18
	14
	---
	14

	p[E,*]
	10
	16
	16
	8
	---


Candidate D is the unique Schulze winner because candidate D is the unique candidate with p[D,X] ≥ p[X,D] for every other candidate X.

Tideman suggests to take successively the strongest pairwise defeat XY and to lock it in its original direction X → Y if it does not create a directed cycle with already locked pairwise defeats and in its opposite direction Y → X otherwise. The winner of the ranked pairs method is candidate Z with Z → W for every other candidate W.

Tideman’s ranked pairs method locks C → B. Then it locks D → B. Then it locks E → C. Then it locks E → B since locking BE in its original direction would create a directed cycle with the already locked defeats E → C and C → B. Then it locks A → C. Then it locks A → B since locking BA in its original direction would create a directed cycle with the already locked defeats A → C and C → B. Then it locks C → D. Then it locks A → D since locking DA in its original direction would create a directed cycle with the already locked defeats A → C and C → D. Then it locks E → D since locking DE in its original direction would create a directed cycle with the already locked defeats E → C and C → D. Then it locks A → E. Thus, the ranked pairs winner is candidate A.

Heitzig suggests to take successively the strongest pairwise defeat XY and to lock it in its original direction X → Y if and only if          (1) locking X → Y does not create a directed cycle with already locked pairwise defeats and (2) no other pairwise defeat with candidate Y as pairwise loser has already been locked. The winner of the river method is candidate Z with W → Z for no other candidate W.

Heitzig’s river method locks C → B. Then it skips DB since candidate B is already the pairwise loser of the locked pairwise defeat C → B. Then it locks E → C. Then it skips BE since locking it would create a directed cycle with the already locked defeats E → C and C → B. Then it skips AC since candidate C is already the pairwise loser of the locked pairwise defeat E → C. Then it locks B → A. Then it locks C → D. Then it skips DA since candidate A is already the pairwise loser of the locked pairwise defeat B → A. Then it skips DE since locking it would create a directed cycle with the already locked defeats E → C and C → D. Then it skips AE since locking it would create a directed cycle with the already locked defeats E → C, C → B, and B → A. Thus, the river winner is candidate E.

Appendix 2: Woodall’s Plurality Criterion

There has been some debate about how to measure the strength of a pairwise defeat when it is presumed that on the one side each voter has a sincere complete ranking of all candidates, but on the other side some voters vote only a partial ranking because of strategic considerations. I suggest that then the strength of a pairwise defeat should be measured primarily by the absolute number of votes for the winner of this pairwise defeat and secondarily by the margin of this pairwise defeat.

The resulting version of this method is used by SPI and Debian because (a) here the number of candidates is usually very small and the voters are usually well informed about the different candidates so that it can be presumed that each voter has a sincere complete ranking of all candidates and (b) here the number of voters is usually very small and the voters are usually well informed about the opinions of the other voters so that the incentive to cast only a partial ranking because of strategic considerations is large.

The resulting version still satisfies anonymity, neutrality, homogeneity, Pareto, monotonicity, resolvability, independence of clones, reversal symmetry, Smith-IIA, and Schwartz. When each voter casts a complete ranking then this version is identical to the version defined in section 2.

The Schulze method can then be described as follows:

A path from candidate X to candidate Y of strength (z1,z2) is an ordered set of candidates C(1),...,C(n) with the following properties:

1.
C(1) is identical to X.

2.
C(n) is identical to Y.

3.
For i = 1,...,(n-1): d[C(i),C(i+1)] > d[C(i+1),C(i)].

4.
For i = 1,...,(n-1):

( ( d[C(i),C(i+1)] > z1 ) or ( ( d[C(i),C(i+1)] = z1 )

and ( d[C(i),C(i+1)] - d[C(i+1),C(i)] ≥ z2 ) ) ).

If there is a path from candidate A to candidate B of strength (z1,z2) and there is no path from candidate B to candidate A of strength (z1,z2), then candidate B is elected with zero probability.

When the strength of a pairwise defeat is measured primarily by p1 (= the absolute number of votes for the winner of this pairwise defeat) and secondarily by p2 (= the margin of this pairwise defeat), then a possible implementation looks as follows:

Input:
d[i,j] with i ≠ j is the number of voters who strictly prefer candidate i to candidate j.

Output:
“w[i] = true” means that candidate i is a potential winner.

“w[i] = false” means that candidate i is not a potential winner.

for i : = 1 to N do

for j : = 1 to N do

if ( i ≠ j ) then

{

p2[i,j] : = d[i,j] - d[j,i] ;

if ( d[i,j] > d[j,i] ) then

p1[i,j] : = d[i,j] ;

if ( d[i,j] ≤ d[j,i] ) then

p1[i,j] : = 0 ;

}

for i : = 1 to N do

for j : = 1 to N do

if ( i ≠ j ) then

for k : = 1 to N do

if ( i ≠ k ) then

if ( j ≠ k ) then

{

s : = p1[j,i] ;

t : = p2[j,i] ;

if ( ( p1[i,k] < s ) or ( ( p1[i,k] = s ) and ( p2[i,k] < t ) ) ) then

{

s : = p1[i,k] ;

t : = p2[i,k] ;

}

if ( ( p1[j,k] < s ) or ( ( p1[j,k] = s ) and ( p2[j,k] < t ) ) ) then

{

p1[j,k] : = s ;

p2[j,k] : = t ;

}

}

for i : = 1 to N do

w[i] : = true ;

for i : = 1 to N do

for j : = 1 to N do

if ( i ≠ j ) then

if ( ( p1[j,i] > p1[i,j] ) or ( ( p1[j,i] = p1[i,j] ) and ( p2[j,i] > p2[i,j] ) ) ) then

w[i] : = false ;

When the strength of a pairwise defeat is measured in this manner then a Schulze ranking is a complete ranking of all candidates with the following property: ( ( p1[A,B] > p1[B,A] ) or ( ( p1[A,B] = p1[B,A] ) and ( p2[A,B] > p2[B,A] ) ) )  (   Candidate A is ranked higher than candidate B.

The intention of the above implementation is that when some voters cast only a partial ranking then when these partial individual rankings can be completed in such a manner that candidate A is a Schwartz candidate, as defined in the introduction, and candidate B is not a Schwartz candidate and these partial individual rankings cannot be completed in such a manner that candidate B is a Schwartz candidate and candidate A is not a Schwartz candidate then candidate B should be elected with zero probability. This guarantees that not unnecessarily a candidate is elected who would not have been a Schwartz candidate when not some voters had cast only a partial ranking because of strategic considerations or other reasons.

Suppose Q1 is the number of voters who strictly prefer candidate A to every other candidate. Suppose Q2 is the number of voters who strictly prefer candidate B to at least one candidate. Suppose Q1 > Q2. Then Woodall’s plurality criterion says that candidate B must be elected with zero probability [37]. In Woodall’s words: “If some candidate B has strictly fewer votes in total than some other candidate A has first-preference votes, then candidate B should not be elected.”

We prove that when the strength of a pairwise defeat is measured in this manner then the Schulze method satisfies the following two criteria where the first criterion implies Woodall’s plurality criterion.

Criterion #1: Suppose Q2 is the number of voters who strictly prefer candidate B to at least one candidate. Suppose d[A,B] > Q2. Then candidate B must be elected with zero probability.

Criterion #2: Suppose Q3 is the number of voters who strictly prefer at least one candidate to candidate A. Suppose d[A,B] > Q3. Then candidate B must be elected with zero probability.

These criteria say that when sufficiently many voters strictly prefer candidate A to candidate B, especially when a majority of the voters strictly prefers candidate A to candidate B, then simply by ranking candidate B tied for bottom (criterion #1) resp. simply by ranking candidate A tied for top (criterion #2) these voters can make sure that candidate B is not elected.

When the strength of a pairwise defeat is measured in this manner then the Schulze method satisfies criterion #1 and criterion #2.
Proof:

Criterion #1: Suppose Q2 is the number of voters who strictly prefer candidate B to at least one candidate; then we get d[B,A] ≤ Q2. Suppose furthermore d[A,B] > Q2; then we get d[A,B] - d[B,A] ≥ d[A,B] - Q2 > 0. Since the strength of a pairwise defeat is measured primarily by the absolute number of votes for the winner of this pairwise defeat, we get p1[A,B] ≥ d[A,B] > Q2.

On the other side, p1[B,A] ≤ Q2 since d[B,X] ≤ Q2 for every other candidate X. With p1[A,B] > Q2 and p1[B,A] ≤ Q2, we get p1[A,B] > p1[B,A] so that candidate A disqualifies candidate B.

Criterion #2: Suppose Q3 is the number of voters who strictly prefer at least one candidate to candidate A; then we get d[B,A] ≤ Q3. Suppose furthermore d[A,B] > Q3; then we get d[A,B] - d[B,A] ≥ d[A,B] - Q3 > 0. Since the strength of a pairwise defeat is measured primarily by the absolute number of votes for the winner of this pairwise defeat, we get p1[A,B] ≥ d[A,B] > Q3.

On the other side, p1[B,A] ≤ Q3 since d[Y,A] ≤ Q3 for every other candidate Y. With p1[A,B] > Q3 and p1[B,A] ≤ Q3, we get p1[A,B] > p1[B,A] so that candidate A disqualifies candidate B.

The following example demonstrates that the version in section 2 does not satisfy Woodall’s plurality criterion.

Example 5 [37]:

11
AB

7
B

12
C

The version in section 2 chooses candidate A despite of the fact that only 11 voters strictly prefer candidate A to at least one other candidate and that 12 voters strictly prefer candidate C to every other candidate.

However, the version in appendix 2 chooses candidate B. This result is compatible with Woodall’s plurality criterion since 18 voters strictly prefer candidate B to at least one other candidate while only 11 voters strictly prefer candidate A to every other candidate and only 12 voters strictly prefer candidate C to every other candidate.

Appendix 3: The Schwartz Set Heuristic

Another way of looking at the proposed method is to interpret it as a method where successively the weakest pairwise defeats are “eliminated”. The formulation of this method then becomes very similar to Condorcet’s original wordings.

Condorcet [27] writes: “Create an opinion of those N∙(N-1)/2 propositions that win most of the votes. If this opinion is one of the N! possible then consider as elected that subject to which this opinion agrees with its preference. If this opinion is one of the 2^(N∙(N-1)/2)-(N!) impossible opinions then eliminate of this impossible opinion successively those propositions that have a smaller plurality and accept the resulting opinion of the remaining propositions.”

In short, Condorcet suggests that the weakest pairwise defeats should be eliminated successively until the remaining pairwise defeats form a ranking of the candidates. The problem with Condorcet’s proposal is that it is not quite clear what it means to “eliminate” a pairwise defeat (especially in so far as when one successively eliminates the weakest pairwise defeat that is in a directed cycle of not yet eliminated pairwise defeats until there are no directed cycles of non-eliminated pairwise defeats anymore then the remaining pairwise defeats usually do not complete to a unique ranking [40]). It is clear what it means when a candidate is “eliminated”; this candidate is treated as if he has never stood. But what does it mean when the pairwise defeat AB is “eliminated” although candidate A and candidate B are still potential winners?

A possible interpretation would be to say that the “elimination” of a pairwise defeat is its replacing by a pairwise tie. However, when this interpretation is being used then the Smith set, as defined in the introduction, can only grow but not shrink at each stage. But when the Schwartz set, as defined in the introduction, is being used, then the number of candidates decreases continuously. With the concept of the Schwartz set the Schulze method can be described in a very concise manner:

Step 1:

Calculate the Schwartz set and eliminate all those candidates who are not in the Schwartz set. Eliminated candidates stay eliminated.

If there is still more than one candidate and there are still pairwise defeats between non-eliminated candidates that are not pairwise ties: Go to step 2.

If there is still more than one candidate, but all pairwise comparisons between non-eliminated candidates are pairwise ties, then all remaining candidates are potential winners: Go to step 3.

If there is only one candidate, then this candidate is the unique winner.

Step 2:

The weakest pairwise defeat between two non-eliminated candidates is replaced by a pairwise tie. Pairwise defeats that have been replaced by pairwise ties stay replaced by pairwise ties.

In the version in section 2, the weakest pairwise defeat is that defeat where |d[i,j] - d[j,i]| is minimal.

In the version in appendix 2, the weakest pairwise defeat is that defeat where the number of votes for the winner of this pairwise defeat is minimal or --if there is more than one pairwise defeat where the number of votes for the winner is minimal-- of all those pairwise defeats where the number of votes for the winner is minimal that pairwise defeat where the number of votes for the loser of this pairwise defeat is maximal.

If the weakest pairwise defeat between non-eliminated candidates is not unique, then all weakest pairwise defeats between non-eliminated candidates are replaced by pairwise ties simultaneously. Go to step 1.

Step 3:

The TBRC is calculated as described at stage 2 of section 2. The winner is that potential winner who is ranked highest in this TBRC.

Appendix 4: Voting Recommendation

The aim of this appendix is to give a detailed recommendation how the Schulze method should best be implemented. In section 2, I proposed that when there is no unique winner then a TBRC should be calculated and the winner is that potential winner who is ranked highest in this TBRC. A less random way to solve such situations (without having to sacrifice any of the desired criteria) is to calculate the Tideman ranking of all candidates (and not only of the potential winners) and to declare that potential winner the winner who is ranked highest in this Tideman ranking. I recommend that the strength of a pairwise defeat should be measured as defined in appendix 2. Then the following 5 stages describe the Schulze method with the Tideman method as additional tie-breaker.

Stage 1:

The strengths p1 and p2 of the paths are calculated as described in appendix 2. Candidate i is a potential winner if and only if for every other candidate j at least one of the following two statements is valid:

1.
p1[i,j] > p1[j,i].

2.
p1[i,j] = p1[j,i] and p2[i,j] ≥ p2[j,i].

Stage 2:

If there is only one potential winner then this candidate is the unique winner. Otherwise calculate the TBRC as described at stage 2 of section 2.

Suppose TBRC[k] is the position of candidate k in this TBRC. Then “TBRC[i] < TBRC[j]” means that candidate i is ranked higher than candidate j in this TBRC.

Stage 3:

The strengths p1 and p2 and the TBRC are used to calculate an initial Schulze ranking. The runtime to calculate the initial Schulze ranking is O(N^3).

Suppose pos[k] is the position of candidate k in this initial Schulze ranking. Then “pos[i] < pos[j]” means that candidate i is ranked higher than candidate j in this initial Schulze ranking.

Input:
p1[i,j] and p2[i,j] with i ≠ j are the strengths of the paths as defined in appendix 2.

TBRC[i] is the position of candidate i in the TBRC as defined at stage 2 of section 2.

Output:
pos[i] is the position of candidate i in the initial Schulze ranking.

for i : = 1 to N do

marked[i] : = false ;

for i : = 1 to N do

{

for j : = 1 to N do

{

if ( marked[j] = true ) then

u[j] : = false ;

if ( marked[j] = false ) then

{

u[j] : = true ;

for k : = 1 to N do

if ( marked[k] = false ) then

if ( k ≠ j ) then

if ( ( p1[k,j] > p1[j,k] ) or

( ( p1[k,j] = p1[j,k] ) and

( p2[k,j] > p2[j,k] ) ) ) then

u[j] : = false ;

}

}

j : = 1 ;

for k : = 2 to N do

if ( u[k] = true ) then

if ( ( u[j] = false ) or ( TBRC[k] < TBRC[j] ) ) then

j : = k ;

marked[j] : = true ;

pos[j] : = i ;

}

Stage 4:

The N·(N-1) pairwise defeats are sorted according to their strength. The pairwise defeat ij is stronger than the pairwise defeat mn when at least one of the following conditions is satisfied (Version 1):

1.
d[i,j] > d[m,n].

2.
d[i,j] = d[m,n] and d[j,i] < d[n,m].

3.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and

pos[i] < pos[j] and pos[n] < pos[m].

4.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and pos[i] < pos[j]

and pos[m] < pos[n] and pos[i] < pos[m].

5.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and pos[j] < pos[i]

and pos[n] < pos[m] and pos[i] < pos[m].

6.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and

i = m and pos[n] < pos[j].

7.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and

j = n and pos[i] < pos[m].

Alternatively the pairwise defeat ij is stronger than the pairwise defeat mn when at least one of the following conditions is satisfied (Version 2):

1.
d[i,j] > d[m,n].

2.
d[i,j] = d[m,n] and d[j,i] < d[n,m].

3.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and

pos[i] < pos[j] and pos[n] < pos[m].

4.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and pos[i] < pos[j]

and pos[m] < pos[n] and pos[n] < pos[j].

5.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and pos[j] < pos[i]

and pos[n] < pos[m] and pos[n] < pos[j].

6.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and

i = m and pos[n] < pos[j].

7.
d[i,j] = d[m,n] and d[j,i] = d[n,m] and

j = n and pos[i] < pos[m].

The rules to sort the pairwise defeats are chosen in such a manner that e.g. when the initial Schulze ranking is ABCDEFG then defeats of otherwise equal strength ( i.e. defeats with d[i,j] = d[m,n] and d[j,i] = d[n,m] ) are sorted AG, AF, AE, AD, AC, AB, BG, BF, BE, BD, BC, CG, CF, CE, CD, DG, DF, DE, EG, EF, FG, BA, CB, CA, DC, DB, DA, ED, EC, EB, EA, FE, FD, FC, FB, FA, GF, GE, GD, GC, GB, GA in Version 1 resp. AG, BG, CG, DG, EG, FG, AF, BF, CF, DF, EF, AE, BE, CE, DE, AD, BD, CD, AC, BC, AB, GF, FE, GE, ED, FD, GD, DC, EC, FC, GC, CB, DB, EB, FB, GB, BA, CA, DA, EA, FA, GA in Version 2 so that e.g. (1) when the initial Schulze ranking is inverted then also the order of the pairwise defeats is inverted and (2) pairwise defeats that are in accordance with the initial Schulze ranking are always stronger than pairwise defeats that are in contradiction with the initial Schulze ranking and that are of otherwise equal strength.

The Tideman ranking is calculated. That means:

In the beginning, each pairwise defeat is not locked. From the strongest to the weakest pairwise defeat proceed as follows: Lock the pairwise defeat ij in its original direction i → j if it does not create a directed cycle with already locked pairwise defeats; otherwise lock it in its opposite direction j → i.

The runtime to calculate the Tideman ranking is O(N^4).

Stage 5:

Candidate i is the winner if and only if for every other candidate j at least one of the following three statements is valid:

1.
p1[i,j] > p1[j,i].

2.
p1[i,j] = p1[j,i] and p2[i,j] > p2[j,i].

3.
p1[i,j] = p1[j,i] and p2[i,j] = p2[j,i] and i → j.

The algorithm to calculate the final Schulze ranking is identical to the algorithm to calculate the initial Schulze ranking, as described at stage 3. Only “TBRC[k] < TBRC[j]” has to be replaced by “k → j”.

Appendix 5: Supermajority Requirements

When preferential ballots are being used in referendums then sometimes proposals have to fulfill some supermajority requirements to qualify. Typical supermajority requirements define some M1 or some M2 ≥ 1 and say that d[A,B] must be strictly larger than          max { d[B,A], M1 } or that d[A,B] must be strictly larger than M2∙d[B,A] to replace proposal B by proposal A. Or they say that d[A,B] must be strictly larger than d[B,A] not only in the electorate as a whole, but also in a majority of its geographic parts or even in each of its geographic parts. It is also possible that in the same referendum the voters have to choose between proposals that have to fulfill different supermajority requirements to qualify. In this appendix, I discuss 3 possible ways to combine the Schulze method with supermajority requirements. Suppose SQ is the status quo. Suppose BigM : = 1 + V, where 1 < V < ∞ is the number of voters.

Suggestion 1:

If d[X,Y] > d[Y,X] and (a) there is no supermajority requirement to replace proposal Y by proposal X or (b) proposal X has the supermajority required to replace proposal Y by proposal X, then d*[X,Y] : = d[X,Y] + BigM; otherwise d*[X,Y] : = d[X,Y].

With d the path strengths p1 and p2 and with d* the path strengths p1* and p2*, as defined in appendix 2, are calculated.

Proposal A is eligible if and only if ( A ≡ SQ ) or ( p1*[A,SQ] > p1[SQ,A] + BigM ).

The winner is that eligible proposal A with the following property: ( ( p1*[A,B] > p1*[B,A] ) or ( ( p1*[A,B] = p1*[B,A] ) and ( p2*[A,B] ≥ p2*[B,A] ) ) ) for every other eligible proposal B.

If there is more than one eligible proposal with this property then the TBRC is calculated as described at stage 2 of section 2; with p1*, p2*, and this TBRC the initial Schulze ranking and with d* and this initial Schulze ranking the Tideman ranking, as described at stages 3 and 4 of appendix 4, of all proposals are calculated and the winner is that eligible proposal A with the above property that is ranked highest in this Tideman ranking.

Suggestion 2:

Suggestion 2 is identical to suggestion 1 except that the definition of “eligible” is replaced by: Proposal A is eligible if and only if ( A ≡ SQ ) or ( ( d*[A,SQ] > BigM ) and                    ( p1*[A,SQ] > p1[SQ,A] + BigM ) ).

Suggestion 3:

The SQ is not eligible. Every other proposal A is eligible if and only if d[A,SQ] > d[SQ,A] and (a) there is no supermajority requirement to replace the SQ by proposal A or (b) proposal A has the supermajority required to replace the SQ by proposal A.

If there is no eligible proposal then the SQ wins. Otherwise all ineligible proposals are eliminated and the Schulze method, as defined in appendix 4, is used to choose from the eligible proposals.

Suggestion 1 is the best one when we interpret supermajority requirements as a tool to guarantee that fundamental laws are not changed too frequently and cannot be changed in a cyclic manner [26]. However, suggestion 1 has the problem that it can happen that in a referendum the SQ is replaced by a proposal A that does not have the supermajority required to replace directly the SQ by proposal A. This problem is solved in suggestion 2. Here the new SQ can be chosen only from those proposals A that have the supermajority required to replace directly the SQ by proposal A ( i.e. d*[A,SQ] > BigM ). The fact that in suggestions 1 and 2 all proposals, and not only the eligible proposals, are taken into consideration to calculate the path strengths p1* and p2* guarantees that fundamental laws cannot be changed in a cyclic manner. The condition ( p1*[A,SQ] > p1[SQ,A] + BigM ) in the definition of “eligible” in suggestions 1 and 2 implies ( p1[A,SQ] > p1[SQ,A] ), i.e. proposal A can win only if it had disqualified the SQ in the absence of supermajority requirements.

Suggestion 3 has the advantage that it is not necessary to decide in advance for each pair of two proposals A and B which supermajority is required to replace proposal B by proposal A. In suggestion 3, this has to be decided in advance only for B ( SQ. Because of this reason the Debian project adopted suggestion 3.

However, in my opinion, suggestion 3 is very problematic not only because it does not prevent fundamental laws from being changed in a cyclic manner but also because it treats the SQ in an unfair manner: As soon as there is a proposal A that has the supermajority required to replace the SQ by proposal A the SQ is changed even when the SQ would have been the winner in the complete absence of any supermajority requirements. Therefore, I recommend to use suggestion 2.

Appendix 6: Electoral College

There has been some debate about how to combine the Schulze method with the electoral college for the elections of the president of the USA. I recommend the following solution:

Stage 1:

For each state separately, a Schulze ranking is calculated by applying the Schulze method, as defined in appendix 4, to the votes cast in this state. In this Schulze ranking, (1) all those candidates who ran in this state are ranked strictly higher than all those candidates who did not run in this state and (2) all those candidates who did not run in this state are ranked equally last.

Stage 2:

Each elector casts a ranking identical to the Schulze ranking of his state. The Schulze method, as defined in appendix 4, is then applied to the electors.
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