
Smith typeset 621 Mar 26, 2001 Range Voting

letter

DocNumber 1 . 0. 0. 0



Smith typeset 621 Mar 26, 2001 Range Voting

Range voting

Warren D. Smith∗

wds@research.NJ.NEC.COM

December 2000

Abstract —

The “range voting” system is as follows. In a c-
candidate election, you select a vector of c real num-
bers, each of absolute value ≤ 1, as your vote. E.g.
you could vote (+1,−1,+.3,−.9,+1) in a 5-candidate
election. The vote-vectors are summed to get a vec-
tor ~x and the winner is the i such that xi is maximum.

Previously the area of voting systems lay under
the dark cloud of “impossibility theorems” showing
that no voting system can satisfy certain seemingly
reasonable sets of axioms.

But I now prove theorems advancing the thesis
that range voting is uniquely best among all possi-
ble “Compact-set based, One time, Additive, Fair”
(COAF) voting systems in the limit of a large num-
ber of voters. (“Best” here roughly means that each
voter has both incentive and opportunity to provide
more information about more candidates in his vote
than in any other COAF system; there are quantities
uniquely maximized by range voting.)

I then describe a utility-based Monte Carlo com-

parison of 31 different voting systems. The conclu-

sion of this experimental study is that range voting

has smaller Bayesian regret than all other systems

tried, both for honest and for strategic voters for any

of 6 utility generation methods and several models of

voter knowledge. Roughly: range voting entails 3-10

times less regret than plurality voting for honest, and

2.3-3.0 for strategic, voters. Strategic plurality voting

in turn entails 1.5-2.5 times less regret than simply

picking a winner randomly. All previous such stud-

ies were much smaller and got inconclusive results,

probably because none of them had included range

voting.

Keywords — Approval voting, Borda count, plurality, unique-

ness, social choice, Condorcet Least Reversal, Gibbard’s dishon-

esty theorem, strategic voting, Monte Carlo study, Bayesian re-

gret.
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1 Generic and non-generic elections

Before considering range voting, it will help to illustrate
some generalities about voting by looking at the most
popular voting system (albeit a poor one if c ≥ 3): plain
plurality. Here each voter awards 1 vote to one of the c
candidates and 0 votes to each of the remaining c − 1.
The winning candidate is the one getting the most votes.
(Ties are broken randomly.)

In a (c = 2)-way election with V voters, each of whom
is modeled as flipping a fair coin, the probability that
your vote will have an effect (i.e., break a tie, or cause
a tie which gets broken your way) is asymptotically (as
V →∞) 1/

√
2πV if V is even, and 2 times larger if V is

odd. (The odd-V formula arises since
(

2n
n

)
4−n, which is

the probability of a tie among the 2n voters besides your-
self, is asymptotic, as n → ∞, to 1/

√
πn, by “Stirling’s

formula.” Here V = 2n+ 1. The even case is similar.) If
we average over the parity of V , this is 3/

√
8πV . Thus

in a ≈ 106-voter election, the probability your vote will
have an effect would be ≈ 1/1671. So if it costs you 1
dollar (e.g. in wasted time and transport costs) to vote,
it is not worth it for you to bother to vote, if the outcome
of the election will affect you by ≤ 1671 dollars.

But the situation is far worse in what I will call the
generic case, where the voters are modeled as tossing
biased coins. Say the coin comes up heads with some
fixed probability p. (The above formula was for the
special case p = 1/2, but generically p 6= 1/2.) In
that case, as V → ∞, the probability that your vote
will have an effect, declines exponentially: it is about
a factor (4[1 − p]p)V/2 times smaller than the formula
for the p = 1/2 special case. For example if V is odd
(V = 2n+ 1) then the probability your vote will have an
effect is

(
2n
n

)
pn(1−p)n. Thus in a 106-voter election with

51-49 favortism of one of the 2 candidates, the probabil-
ity your vote will have an effect is only about 10−90. In
this case, even if the fate of the entire universe hinged on
the outcome of the election, and you only had to sacri-
fice one atom of money in order to vote, it still would not
be worth bothering, since the universe contains < 1080

atoms.

Thus it is usually irrational for most people to vote.
In the generic case it is irrational for anybody to vote.
Therefore the only voters are either irrational, or those
few with a tremendous personal stake in an ultra-close
election, or those who have been bribed to vote. If it is
regarded as better for society that large elections be de-
cided by rational voters, then it is essential to make vot-
ing as cheap and simple as possible, for example by allow-
ing voting by telephone or over the internet. Any scheme,
therefore, that asks voters to vote more than once per
election (such as the present USA system of “primary”
and “secondary” elections, or the French “plurality plus
runoff” system with a “second round” in which the top
two candidates from the first round [if nobody got > 50%
in that round] are voted on), or which is in the slightest

way complicated, should be ruled out1.
These (exponential and inverse square root) dependen-

cies of voting power on the number V of voters are quite
different from what one might naively have expected,
namely 1/V .

But, now consider an election in which the coin-
probability p is itself a random variable, uniform in [0, 1].
In that case, if the number of voters V is odd, V = 2n+1,
the probability your vote will have an effect is∫ 1

0

(
2n
n

)
pn(1− p)ndp. (1)

This integral is just an “Euler beta function,” so we may
evaluate it in closed form. The result is 1/V . Mathe-
matical poetic justice has prevailed!

For an even number of voters, V = 2n, this becomes

1
2

∫ 1

0

(
2n− 1
n− 1

)
pn−1(1− p)ndp (2)

assuming you plan to vote “yes;” and that the probability
is 1/2 that the tie you create is broken your way. (If you
planned to vote “no” then this expression with p changed
to 1−p would be used, which would have the same value
after integrating.) This integral has value 1/(2V ), which
is not quite so poetic.

Summary: There are two kinds of 2-candidate, V -
voter elections: “generic” ones (which happen almost all
the time) in which your voting power (probability of af-
fecting the election result) declines exponentially with V ,
and rare “nearly tied” ones in which your voting power
only declines like 3/

√
8πV . The net effect (averaged over

both kinds of election and over the parity of V ), is that
one’s voting power is exactly 0.75/V .

The whole notion of a “generic” election, in which ev-
ery interesting probability and probability ratio goes ex-
ponentially to 1 or 0 as V → ∞, is going to be key
throughout this paper. I will take the attitude that

1It has been pointed out to me that many people still vote, and
they are not all crazy. (Turnouts are presently about 50% in pres-
idential election years and about 35% in nonpresidential election
years, in USA elections, and they seem to be declining with time.)
This could be viewed as a good counterexample to the foundational
notion of economics that people are “rational,” i.e., strive to in-
crease their own wealth. Or it could be viewed as a good reason
the present paper’s later analyses of the effects of “rational voting”
should not be taken too seriously – at least, no more seriously than
the arguments of economists. On the other hand, there clearly is
some evidence for effects caused by rationality in voting behavior.
For example the well known dominance of the “two party system”
in the USA, is obviously the cumulative result of the fact (cf. §2,
“tactical thinking”) that a rational voter in large plurality elections
generically will always vote for one of the two frontrunners in the
polls, regardless of the merits of the remaining candidates. (After
1824, when most presidential candidates were unaffiliated, every
presidential election has been won by a member of one of the two
major parties. There were, however, several times when a major
party broke up and re-formed, or was renamed. For example in
1864 the Republican party’s name was temporarily changed to the
“Union” party. In ≈ 1834 the “National Republican” party broke
up, with most members joining the new “Whig” party; by 1854 the
Whigs in turn had dissolved and most of its Northern members had
joined the new “Republican” party. Since then every US president
has been either a Republican or a Democrat.
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1. Voting systems should be analysed in generic elec-
tions.

2. Voting systems with unsatisfying behavior generi-
cally, should be eliminated from consideration.

3. Only then should nongeneric behavior be consid-
ered.

Admittedly, the analysis I’ve just given has only been
for the plurality voting system, but it should be evident
that these same exponential phenomena occur, assuming
independent voter vote probabilities, in many other vot-
ing systems too, for example all the COAF systems (§3)
and in systems with a finite number of rounds, whose
individual rounds are COAF. It seems pointless to try to
elucidate exactly for which voting systems these expo-
nential trends happen, since it always seems to be trivial
to decide any particular case.

2 Tactical thinking that follows from these

exponential properties

In plurality elections having c ≥ 3 candidates, “tactical”
considerations prevail2. Here the thinking is that one
“must” vote for one of the top two candidates, other-
wise one’s vote is “wasted.” We can now see that this
thinking is entirely justified, because, generically, a vote
for anybody other than the two frontrunners has an ex-
ponentially smaller chance of having an effect. In short,
even if you think non-frontrunner N is a million times
better candidate than frontrunner G, who in turn is only
1.001 times better than frontrunner B, then, because N ’s
chances of being elected are at least 1090 times smaller
than either G’s or B’s chances, your best move is to “dis-
honestly” vote for G.

Generically, the chances for each candidate succes-
sively lower ranked in the pre-election polls, are smaller

2 Example: in an editorial on 26 October 2000, the New York
Times advised “tactically minded” voters to vote for Gore even
if their favorite candidate was Nader. It even went so far as to
call Nader’s candidacy a “disservice” because it might siphon off
enough Gore voters to result in Gore’s defeat. Two weeks later,
in the closest US presidential election ever, Gore indeed appeared
to have lost the election – due to the sub-election in Florida in
which indeed, the difference between Gore’s and Bush’s vote to-
tals was about 9 × 10−5 of the total votes, and also < 1% of the
97488 Nader votes in Florida. (Polls indicated 40% of Nader vot-
ers would have voted Gore, and 20% Bush, had Nader not run.)
Despite this, in neither this nor in any other US presidential (or
Senatorial, or Gubernatorial) election, has anybody’s single vote
ever had any effect, since no US presidential election (or statewide
sub-election) has ever been tied – at least according to claims in the
New York Times on Sunday, 12 November 2000. In that article it
was claimed that a vote recount showed the statewide New Mexico
election was won by G.W.Bush over A.Gore by 4 votes (Gore had
won the original vote), which the Times called the closest presi-
dential state vote ever (claiming the 2nd closest was T.Roosevelt
winning Maryland in 1904 by 51 votes). But later it was claimed
Bush had won by 17 votes. Then [Albuquerque Journal, 15 Nov]
it was claimed this small margin for Bush was actually due to a
handwriting error during the counting, so that Gore had a 375-
vote margin. By 18 Nov, 375 had transmuted to 481, and the
transmutations continued, ultimately reaching 366.

by exponentially enormous factors than those of the pre-
vious candidate.

Incidentally, due to the importance of such tactical
thinking, later voters (e.g. Hawaiians) have more power
(and more incentive to vote dishonestly) if tallies of ear-
lier votes (e.g. by voters in Maine, which has earlier time
zones) are made public. If the goal of the election is
“democracy” (in which all voters have equal power, and
are encouraged to express their honest opinions when
they vote) then no reporting of vote totals should be
permitted until the election is over.

The purpose of this paper is to claim that there is a
better voting system available: “range voting.” In range
voting there is no “tactical disadvantage” to voting for
your favorite candidate. We will furthermore see that
range voting is uniquely optimum among a wide class of
possible voting systems, in the sense that it allows voters
to provide the “most possible information” without being
“tactically misguided.”

3 Compact set based, One-vote, Additive,

Fair systems (COAF)

In this paper we are going to restrict ourselves to the
following (wide) class of voting systems:

Let there be c candidates and V voters, c fixed, V
large. Each voter chooses a c-vector from a fixed compact
set S ⊂ Rc of “allowed votes.” The vectors are summed.
The maximum entry in the summed c-vector corresponds
to the winner.

Such a system is “fair” if S is invariant under the group
of c! permutations of the c coordinates of Rc.

Here is a list of several COAF voting systems, along
with the descriptions of the corresponding sets S.

1. Plurality: S is c vectors, each of shape
(+1, 0, 0, . . . , 0).

2. Bullet: S is c vectors, each of shape (−1, 0, 0, . . . , 0).

3. Borda [21][22]: S is the c! permutations of (c−1, c−
2, . . . , 2, 1, 0).

4. Dabagh [8]: S is (c − 1)c vectors, each of shape
(1, 1/2, 0, 0, . . . , 0).

5. Approval [5]:
S is 2c vectors of shape (±1,±1, . . . ,±1). (But 2 of
these 2c are “silly.”)

6. Range: S is the cube |x1| ≤ 1, |x2| ≤ 1, . . . , |xc| ≤ 1.

Note in the “bullet” system you vote against a most-
hated candidate. In the Borda system you rank-order the
candidates and the entries of all the permutation-vectors
are summed. Also Borda is equivalent to the aggregate
sum of all

(
c
2

)
pairwise elections (assuming voters are

honest in, and vote in, each pairwise election). In the
Dabagh “vote and a half” system you give a first-choice
candidate 1 vote and a second-choice candidate half a
vote. If the number of candidates c = 3, then Dabagh
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is equivalent to Borda. If c = 3, then SBorda also is
equivalent to the 6 vectors of shape (+1, 0,−1), hence
is essentially equivalent to the sum of a Bullet and a
Plurality vote.

3.1 Non-COAF voting systems

Unfortunately, not every known voting scheme is COAF.
Counterexamples:

1. Thomas Hare’s (1850) “Single Transferable Vote”
(STV) system [1] in which each voter specifies a
c-permutation as his vote. The system eliminates
the candidate with the fewest first-place votes from
consideration, thus reducing all c-permutations to
(c− 1)-permutations, and this is repeated until, af-
ter the (c−1)th round, only 1 candidate (the winner)
remains3.

2. Schemes based on “runoff” sub-elections either are
not “one-vote” or are not additive (i.e. depend on
something other than who has the largest summed
vote) or are not fair, so COAF would also disallow
them.

3. The “electoral vote” scheme used in the US is not
“additive” and so COAF would disallow it. (It is
also unfair in the sense that it is not invariant under
a permutation of the voters – as opposed to our usual
definition of “fairness” involving permuting the can-
didates.)

4. “Least reversal voting” (similar to a system advo-
cated by the Marquis de Condorcet in 1785): In
this system, each vote is a rank-ordering of the c
candidates (perhaps with ties, e.g., A > B > C =
D > E). Consider the arc-weighted directed graph,
with c nodes, where the arc i→ j is directed toward

3 Essentially this system is used in Irish national elections and
to elect Australian representatives. It has also been called “instant
runoff voting” (IRV). (The thinking behind that: “Runoff” elec-
tions in which a revote is made for the top candidates only from
a previous election with more candidates, supposedly are superior
to plurality elections when there are more than 3 candidates. STV
systems give the effect of having a runoff without forcing voters
to vote more than once, hence supposedly are even more supe-
rior.) Hare’s STV system can also be used to elect any number w,
1 ≤ w < c, of “winners.” One disadvantage of this system is non-
monotonicity: ranking a candidate higher in one’s vote can actually
decrease his chances of winning. There is also Clyde H. Coombs’s
variant STV system in which the candidate with the largest num-
ber of last-place votes is eliminated each round. It seems obvious
that Coombs’s system is far worse than Hare’s because it is far
more easily destroyed by manipulation: Specifically, all rational
voters will vote their least-liked frontrunner candidate an artifi-
cial “last place” ranking. (Meanwhile, honest opinions about who,
among the large number of candidates, is the worst, would be split
among the many deserving choices.) In this way, all frontrunners
would be essentially certain to be eliminated in early rounds and
some unknown “dark horse” would always be elected. However, see
theorem 8 §10.7 for some distressing properties of Hare’s system
under certain voter strategies. In yet another possible STV system,
the candidates, not the voters, select and announce to whom their
vote is to be transferred if they are eliminated – but that idea is
not possible if the “candidates” are not people, just alternatives.

the winner of the pairwise i versus j election, and
is weighted by the margin (difference in number of
votes) of that defeat. If this digraph has a unique
node with outvalence zero, then that is the winner.
Otherwise, a set of arcs of minimum summed weight,
is chosen, such that by reversing their directions, one
gets such a winner. This scheme also can be modi-
fied to choose w out of c “winners;” we reverse the
set of arcs of minimum summed weight so that a
subset of exactly w nodes is created, from which the
remainder of the digraph is unreachable.

5. The “Copeland system” which is like Condorcet, ex-
cept the winner is simply the winner of the most
pairwise elections, ignoring the margins in each.

6. Black’s suggestion [3]: Start to use Condorcet, and if
a candidate exists who won every pairwise election,
then he wins. Otherwise, abandon Condorcet and
use Borda.

7. The “Bucklin system:” The voters supply a rank
ordering of the candidates as their vote. If a candi-
date has a “Majority of the Voters” (i.e. a number
greater than one half of the total number of vot-
ers) from the count of the first choices, then that
candidate wins. If no candidate has a majority, the
second choices are added to the first choices. If one
or more candidates now has a “Majority of the Vot-
ers,” the candidate with the greatest number wins.
(A “Majority of the Voters” is not the same as a
majority of the sum now being used.) If there is no
such candidate, then the third choices are added to
the combined first and second sums. This continues
until a “majority” winner can be declared4.

Additive schemes have simplicity advantages, such as
the fact that it is not necessary to remember the individ-
ual votes (one merely needs to keep track of a c-vector
running total). With an additive scheme, each voting
location can transmit its subtotal to the central agency,
whereas in nonadditive systems (e.g. transferable vote),
it may be necessary to transmit a far larger amount of
information, which might make problems and mistakes
more likely. (See Wk discussion in §9.3.)

4 Honest Voters and Utility Voting

If all voters were “honest” then the clearly best scheme
would be: each voter votes (U1, U2, ..., Uc) where Ui is
the utility for that voter of “candidate i gets elected.”

4Bucklin was used in 7 US states starting in 1912 in votes for
important offices, including gubernatorial races. It is mentioned in
[8]. Bucklin was found to be (and is) defective in that a voter’s
second-choice vote often can help to defeat that voter’s first-choice.
The system is thus non-monotonic. Hence many voters are moti-
vated to lie about their second choices, or motivated simply not
to indicate a second choice (and, empirically, they mostly indeed
did single-vote). But this thwarted the goal of discovering which
candidate was favored by a majority of voters. Hence all US states
eventually dropped Bucklin.
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(This would have been COAF with S = Rc, except that
this S is not compact.) Then the winner would maximize
overall summed Bayesian utility for all society.

But... obviously, our knowledge of human nature
tells us that assuming such honesty is ridiculous; all it
would take to destroy everything would be for just one
dishonest voter to claim an enormous utility for some
candidate5. (For robot voters, such assumptions of hon-
esty need not be ridiculous6.)

A more robust variant of the same system would be
“scaled utility voting.” Here, each voter awards each
candidate a number in [−1, 1] of votes, where the maxi-
mum and minimum utility (if elected) candidates for that
voter would get +1 and −1, and the others would be lin-
early interpolated between ±1 according to their utility
values. Although it still is unrealistic to assume voter
honesty in such a system, at least the damage a small
number of dishonest voters can wreak, is bounded. Fur-
thermore, if it were the case that maxi Ui −minj Uj = 2
for each voter (so that no scaling was required), then hon-
est scaled utility voters would indeed elect the genuinely
best candidate for all of society.

5 Rational Voters and what they’ll

generically do in COAF voting systems

Consider “maximally rational but dishonest” voters.
(For short I will just call them “rational.”) A ratio-
nal voter picks the vote from S which maximizes his ex-
pected utility given that he has seen pre-election poll
results for a small random subset of the other voters and
given his utility values ~U = (U1, U2, . . . , Uc) for all the c
candidates. We shall assume the voter shall assume that
these poll results are a fairly accurate prediction of what
is likely to happen in the upcoming election, i.e., that
the pollees did not lie to the pollsters7.

5Thus, this voting system should only be adopted when it is
known that the voters are people of the utmost honesty and de-
pendability. For example, in the world at present, it is only used in
one place I know of: judging the winning fighter in boxing matches.

6For example, suppose there are 77 independent algorithms that
attempt to recognize a video image as corresponding to one of
100 human faces. How can we decide, based on the 77 algorithm
outputs, which of the 100 humans is the most likely to be the
correct answer? A reasonable solution would be to employ honest
utility voting, with each algorithm’s “utilities” being its estimated
log-likelihoods for each of the 100 humans. “Honesty” could be
assured by generating the 7700 log-likelihood estimates using a
common procedure based on recorded historical performance for
each of the 77 algorithms.

7However, rational pollees would lie to the pollsters. Further-
more, if there were a sequence of such polls, say, 1 per week before
the election, then rational voters would presumably try to lie to
the pollsters, probably in different ways in each poll, in an attempt
to manipulate people’s “strategic voting decisions” during the up-
coming election – as well as in an attempt to manipulate people’s
“strategic lying decisions” in future polls! We are going to ignore
all that and assume that rational voters will assume that the poll
results are a good approximation to what the vote vectors’s mean
(and covariance matrix) will be. It seems experimentally justified
that polls are accurate predictors. This is perhaps because pollees
do not have enough time to calculate what the best lie to tell the
pollster is (and do not bother to precalculate because the proba-

Now, the poll results are going to be of the following
form (assuming all pollees make their decisions about
what vote vector to supply to the poller independently –
which is reasonable in the absence of communication be-
tween them): they will tell us the mean c-vector and vari-
ance c×c matrix of a c-dimensional normal distribution8.
Consider the limit V → ∞. Affinely transform Rc to
make the Gaussian be spherical with center at ~0. The
decision hyperplanes xi = xj are still hyperplanes in the
affined space A. The probability the election will cause
a candidate k to win, is the integral of the Gaussian over
the part of A where k won. The probability your vote can
have an effect, is, essentially, the integral of the Gaussian
over a thin slablike neighborhood of all the decision sur-
faces. Because the Gaussian is sharply peaked (having√

variance of order
√
V , which is far smaller than the

|mean|, which is of order V ), this integral is, generically,
exponentially unaffected by anything other than the clos-
est decision hyperplane surface to ~0, when V →∞.

So the procedure the rational voter will adopt is:

1. In the affined space A, find the decision surface clos-
est to ~0.

2. Let i and j be such that that surface corresponds to
candidate i versus j.

3. Generically, the voter will then vote the vector in S
furthest in the direction ±(~ei−~ej) (where ~ek denotes
the unit vector in the xk direction) This is because
the probability the election will be won by i or j is,
generically, enormously exponentially close to 1 for
V large. The voter is best off trying to alter who of
i or j wins. If he devotes any of his vote to alter-
ing a versus b where {a, b} 6= {i, j} then the prob-
ability that that part of his vote will have any ef-
fect would be enormously exponentially smaller and
hence could not (in the limit V →∞ with his utili-
ties ~U held fixed) maximize expected utility.

Given that this is what is going to happen... there is
only one circumstance in which the rational voter would
ever output a vote giving any information about his pref-
erences on any candidates besides i and j: if the set S
happened to have a “flat face” normal to the direction
~ei − ~ej ! (Note: if S were a sphere, or anything with a
curved surface locally behaving polynomially, then still
the rational voter would only output an exponentially
small amount in the non-i, non-j coordinates of his vote.
So S really needs to have a super-polynomially flat face
to make the rational voter output non-negligible infor-
mation, and hence in the limit V → ∞ this face must
become genuinely flat.)

One can similarly argue that, once the rational voter
decided he wanted to be on one given face (say the hy-
perplane xi − xj = const) of S, then, within that face-
plane, we could perform a similar affined Gaussian argu-
ment in 1 dimension less, and thus he would again act
bility they will be polled is very small).

8In the limit V large, by the central limit theorem. We shall
assume the poll results are not reported in any greater detail.
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to move as far as possible in some direction ~ea − ~eb for
some a, b with {a, b} 6= {i, j}. Hence, to force (or allow)
the rational voter to continue to provide information af-
ter he’s provided information about candidates i, j, a, b,
the boundary of this face must also be flat and oriented
normally to ~ea−~eb. (See §7 for more discussion of ratio-
nal voter strategy in COAF systems.) We can continue
on in this way to argue that every relevent boundary of
every face of every dimension of S, must be determined
solely by hyperplanes of the form xi − xj = const.

6 A particular natural compact set P

It is now natural to consider the Polyhedral set P in Rc

defined by

P = {~x ∈ Rc with |xi − xj | ≤ 2 ∀ i, j ∈ {1, 2, . . . , c}}.
(3)

Since this set is unaffected by any translation by any
(x, x, x, . . . , x) (and no voter cares if his vote is translated
by any such) we could also demand x1 +x2 + ...+xc = 0,
thus getting a (c− 1)-dimensional polyhedral set. What
is P?

When c = 2, we get a 1D interval and we get plurality9

voting. When c = 3, we get a 2D regular hexagon. When
c = 4, we get a 3D “rhombic dodecahedron” equivalent
(after a rotation and scaling) to the convex hull of the
following 14 points: the 6 vertices (±2, 0, 0) of a regu-
lar octahedron, and the 8 vertices (±1,±1,±1) of the
reciprocal cube.10

The vertices of P have the property that at least c− 1
equalities |xi − xj | = 2 will hold. If we draw a c-node
directed graph (directed arc i→ j if xi−xj = 2) to repre-
sent such a vertex, then there are ≥ c−1 directed arcs in
the graph, with no two arcs consecutive (i.e., i→ j → k
never happens). Hence the graph is bipartite. The “up-
per layer” in this bipartite graph must have all coordi-
nates +1 (unless no arc comes out of that node; then any
value in [−1,+1] is ok). The “lower layer” must have all
coordinates −1 (unless no arc enters that node; then any
value in [−1,+1] is ok). Each arc you add causes at
least 1 node to be forced to +1 or −1 (we start with
1 arc and 2 such nodes) so the total number of nodes
which are either +1 or −1 must be: all c of them. Final
conclusion: the vertices of P are precisely the 2c hyper-
cube vertices (±1,±1, ...,±1) – appropriately translated
by some (x, x, x, . . . , x) to make the coordinates sum to
0, if you desire; this makes no difference, though. I.e., to
explain the somewhat mysterious claims last paragraph,

9Actually, the resulting system is not exactly the same as plu-
rality. However, rational voters will always choose to make their
vote lie at an interval endpoint in order to maximize its impact
(unless they think the two candidates are exactly tied, in which
case, presumably they would not vote at all). If all voters acted
this way we would indeed have plurality voting.

10In general, P is obtained by starting with a regular (c − 1)-
simplex, putting hyperplanes through each vertex perpendicular to
the (c− 1) edges out of that vertex, and these (c− 1)c hyperplanes
define the faces of P ; and (we shall soon see) the voting system
obtained is always equivalent to range voting.

note that a 3D cube viewed along a diagonal is a 2D reg-
ular hexagon, whereas a 4D cube viewed along a diagonal
is a 3D rhombic dodecahedron.

Conclusion. We may regard this set P as the c-
hypercube |xi| ≤ 1, i = 1, 2, . . . , c (or as its projection
along a diagonal into the

∑c
i=1 xi = 0 plane).

Using S = {the vertices of P} would cause us to adopt
“approval voting.” If the full set P (not just its 2c ver-
tices) is allowed, we get “range voting.”

One reason to prefer range voting to approval voting
is: range voters are capable of expressing an opinion that
≥ 2 candidates were tied, as opposed to being artificially
forced to prefer one of them (which would cause the sys-
tem to be more noisy).

7 Rational voting in COAF systems

Before proceeding to consider under what conditions S
is forced, uniquely, to be P , so that we are forced to
get range voting... let us first understand precisely what
rational voting, in COAF systems, generically is.

A “rational” voter, by definition, votes in such a way
as to maximize the expected utility of the election result.
Thus (in the limit V → ∞), his vote vector ~x is chosen
to maximize ∑

a

∑
b

(Ua − Ub)(xa − xb)Pab (4)

subject to ~x ∈ S, where Uk is that voter’s utility for
“candidate k is elected,” and Pab is proportional to the
probability that the election will be tied between a and
b, so that the vote ~x will break the tie. We are here
modeling the probability densities as “smooth enough”
that the probability of being “approximately tied with
gap ≤ G” is proportional to G, thus explaining the term
(xa − xb) in the sum.

Now, generically, all the Pab are exponentially tiny
as V → ∞, and all their ratios are exponentially enor-
mous. (All the Pab can be approximately evaluated, to
good enough precision for our purposes, with knowledge
of the Gaussian distribution from the pre-election polls,
by finding the L2-norm of the min-norm point on the
a-b decision surface, in the affined space A of §5; the
Pab will be decreasingly ordered in the same order as the
increasing order of these norms. In the below we shall
also assume, also “generically,” that all the Uk are dis-
tinct.) Hence, in the limit V →∞ with ~U fixed, choosing
the best ~x becomes trivial: always choose it, subject to
~x ∈ S, to maximize xa−xb for the a and the b with max-
imum Pab. If this suffices to specify ~x uniquely, we are
done. Otherwise, suppose this maximization has reduced
S to the much smaller (but non-singleton) set S1. Now
consider the a and b with the next largest value of Pab
and maximize xa−xb subject to ~x ∈ S1. If the resulting
set S2 ⊂ S1 is not a singleton, continue on in this way
until ~x is uniquely determined; that is the rational vote.

It turns out that this algorithm for determining the
rational vote simplifies drastically in the case when the
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Gaussian is spherically symmetric. In that case, sup-
pose the center of the Gaussian is ~X. Suppose without
loss of generality that the candidates are ordered by de-
creasing likelihood of election, e.g. candidate #1 is the
frontrunner, with X1 = maxkXk, and #c is in last place,
Xc = minkXk. Then the log-likelihood that candidate
b will end up tied for the lead with some particular can-
didate a for some a < b, is proportional (in the V → ∞
limit) to

logPab ∝
−1
b− 1

b∑
k=1

(Xk −Xb)2 (5)

where Xb ≡ 1
b

∑b
j=1Xj .

Thus the rational vote ~x may be determined by consid-
ering the candidates k in decreasing order of Xk. Each
time, we choose xk to be either: the greatest or least pos-
sible value subject to ~x ∈ S and subject to the fact that
we already chosen xj for 1 ≤ j < k. (Because, generi-
cally, these j ↔ k ties are enormously exponentially more
likely than any ties involving candidates > k: any choice
not placing maximum or minimum weight on xk, could
not be utility maximizing.) Which? Since (by EQ 5) all
ties between candidate k and candidates j are equally
likely (for all k − 1 possible choices of j, 1 ≤ j < k) we
want to choose xk to maximize

k−1∑
j=1

(Uj − Uk)(xj − xk). (6)

Lemma 1 (Rational voting in COAF systems:
Using “moving average” as threshhold maximizes
utility) Let U b = b−1

∑b
i=1 Ui denote11 the average of

the first b candidate utilities. Choosing xk to maximize
EQ 6 is equivalent to the following:

1. If Uk > Uk−1 then set xk to the maximum allowable
value.

2. Otherwise set xk to the minimum allowable value.

Proof. EQ 6 may be rewritten

(k−1)Ukxk−(k−1)xkUk−1 +
k−1∑
j=1

Ujxj−Uk
k−1∑
j=1

xj . (7)

Of the four terms in EQ 7, the last two are constants
unaffected by xk. Thus if k > 1, maximizing EQ 7 is
equivalent to maximizing

[Uk − Uk−1]xk (8)

proving the claim. QED.
Thus, to determine (generically), your rational vote

in the Borda system, proceed as follows. First, award
the best of the two frontrunners c votes and the worst 0

11We assume the candidates are ordered by decreasing likelihood
of election according to the pre-election polls, and assume those
polls yielded a spherically symmetric Gaussian.

votes. Now, proceed through the remaining c − 2 can-
didates k in decreasing order of their election likelihood
(according to pre-election polls). If candidate k’s utility
exceeds the average utility of the previous k − 1 candi-
dates (whose votes we have already chosen) then award
k the maximum available vote value (which, according to
the rules of the Borda system, keeps decrementing start-
ing from c − 1), otherwise the minimum available vote
value (which keeps incrementing starting from 0).

Thus a utility vector ~U = (3, 9, 1, 5, 0), with the can-
didates ordered in decreasing order of their rank in
the polls, would translate into a Rational Borda vote
(0, 4, 1, 3, 2).

Finding the rational range vote is even simpler, be-
cause the maximum and minimum vote values are always
just +1 and −1. Thus (generically) to find the rational
range vote, award the higher-utility among the two fron-
trunners +1 votes and the worst −1 votes. Now, proceed
through the remaining c − 2 candidates k = 3, . . . , c in
decreasing order of their election likelihood (according
to pre-election polls) awarding xk = ±1 if Uk is greater
than, or less than, the average utility of the previous k−1
candidates.

We call this the Moving Average Strategy. Lemma 1 is
related to

Lemma 2 (Average as threshhold maximizes util-
ity II) Let U = c−1

∑c
i=1 Ui denote the average of the c

candidates’s utilities. Choosing ~x to maximize

c∑
a=1

c∑
b=1

(Ub − Ua)(xb − xa) (9)

given that |xk| ≤ 1 for all k ∈ {1, 2, . . . , c}, is equivalent
to setting xk = sign(Uk − U).

Proof. Obviously, EQ 9 is maximized by making all co-
ordinates of ~x be ±1, and also obviously this should be
done according to xk = sign(Uk−T ) for some threshhold
T ; the only question is what T is. To answer that, con-
sider transferring some xk from −1 to +1. The additive
effect this will have on EQ 9 is

(c− 1)Uk +
∑
j 6=k

Uj (10)

which is positive if and only if Uk is greater than the
average utility U 6=k among the c − 1 other candidates.
Since cU = (c− 1)U 6=k +Uk, this in turn happens if and
only if Uk > U . QED.

Essentially, lemma 2 says that the utility-maximizing
range vote in situations without poll data, or in which
the poll data is a precise c-way tie among the top c candi-
dates (we assume any other candidates are exponentially
enormously ignorable, and assume all the variances as
well as all the means are equal, i.e. assume that the
Gaussian is spherically symmetric) is pure ±1’s with the
+1’s awarded to the above average and the −1’s to the
below average utility candidates. This follows from EQ
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4 since the Pab are all equal – all ties are equally likely to
arise in the election, and then to be broken by our vote.
Thus rational range voting can also be understood even
in non-generic (tied in the polls) situations.

It has, however, been left unresolved by lemmas 1 and
2 what the most rational vote is in the more complicated
situation where the Gaussian from the pre-election polls
is not spherically symmetric, i.e., where the k×k covari-
ance matrix of the k vote coordinates is not just a scaled
identity matrix. In that case the quadratic form in EQ 5
must be replaced by a different – but still positive definite
– quadratic form and the Pab no longer can be regarded
as all equal in the c-way tie scenario of lemma 2.

8 Uniqueness of P

We now return to the main line of argument, starting
from the end of §6.

Actually, to force rational voters to provide informa-
tion, it was not necessary to make the face planes be
xi−xj = ±2. One could have chosen xi−xj = κ for any
constant (or several constants) κ. But if in addition we
demand that S be convex then it is not possible for two
different κ’s to coexist for a fixed (i, j) (because there
is no convex set whose upper boundary contains both a
nonzero measure chunk of a hyperplane, and a nonzero
measure chunk of a different parallel hyperplane). And
if we demand that S be fair (invariant under the c! per-
mutations of coordinates) then all the κij must be equal
to just one constant, which we may as well (by scale
normalization) select to be 2.

So far, we have demanded that our voting system be
fair, convex, compact, additive, and have the property
that rational voters can express independent informa-
tion about at least bc/2c disjoint pairs of candidates,
plus an extra half-disjoint pair if c is odd (or: alterna-
tive phrasing: “information about at least c− 1 pairs of
candidates”).
S is still not uniquely specified by these desiderata

because, although we know that every hyperplane xi −
xj = ±2, must determine a face, we have not forbidden
other kinds of faces. However, there are several possible
additional conditions, any one of which will cause S to
become uniquely specified (and S = P ):

1. We can demand S (when projected into the∑c
i=1 xi = 0 hyperplane) have maximal (c − 1)-

volume (subject to our bound maxi,j |xi−xj | ≤ 2 if
~x ∈ S), thus granting voters the “maximum possible
expressive freedom” subject to our previous desider-
ata. (Maximum volume immediately implies con-
vexity, since S must fill its convex hull, so S must in
fact then be the set {~x ∈ Rc such that |xi − xj | ≤ 2
and

∑c
i=1 xi = 0}.)

2. We can demand that rational voters always have
the freedom to give their favorite (i.e. any) candi-
date the largest possible number (i.e. +1) of votes

(despite the fact that this favorite may have negligi-
ble chances of election according to the pre-election
polls).

3. We can demand that voters always have the option
of being “honest” (albeit irrational) in the sense that
they will always be allowed to do “scaled utility vot-
ing.”

To summarize:

Theorem 3 (Uniqueness of range voting) When the
number of voters V goes to ∞ with the number c, c ≥ 2,
of candidates fixed and with each voter having a uni-
formly bounded utility for the election of each candidate,
then: there is a unique12 compact set S ⊂ Rc, and a
unique corresponding COAF voting system, obeying these
2 demands.

1. Rational voters (with arbitrary generic pre-election
poll results) can express independent information
about at least bc/2c disjoint pairs of candidates, plus
an extra half-disjoint pair if c is odd. (Or: alter-
native phrasing: “can express information about at
least c− 1 pairs of candidates.”)

2. At least one of the following is true:

(a) S (when projected into the
∑c
i=1 xi = 0 hyper-

plane) has maximal (c − 1)-volume subject to
maxi,j |xi − xj | ≤ 2 if ~x ∈ S.

(b) S is convex and each rational voter can choose
to give an arbitrary candidate the maximum
possible number of votes.

(c) Voters could, in principle, do honest scaled util-
ity voting using the maximum possible scale,
i.e. with a vote satisfying maxi,j |xi − xj | = 2.

The unique set S always is the hypercube |xi| ≤ 1 and
the voting system is range voting.

Theorem 4 (Honesty in 3-way elections) If c = 3
(3-way election) then (when V →∞) the unique COAF
voting scheme such that

1. S is convex and compact

2. Has the property that either rational or honest vot-
ers will generically provide x1, x2, x3 votes for can-
didates 1, 2, 3 such that x1, x2, x3 are ordered consis-
tently with the voter’s actual preferences (i.e. x1 ≥
x2 ≥ x3 if the voter thinks candidate 1 is superior
to 2 is superior to 3)

is the cube |x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 1.

In contrast to the above theorems:

12Aside from scaling, and after projection into the
∑c

i=1
xi = 0

hyperplane.
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1. In Borda, Plurality or Bullet, the rational voter can
easily find himself with no way to provide any in-
formation about his most-loved candidate! For ex-
ample, in a 3-candidate Borda=Dabagh vote, the
rational voter will vote 2 for one of the two poll-
frontrunners, 0 for the other frontrunner, and then,
whether the remaining candidate is his most-loved
or most-hated does not matter since he will have no
way to express his feelings on the subject – he must
award that candidate, by the rules of the Borda sys-
tem, exactly 1 vote no matter what he thinks. If
all voters are rational, one of the two poll frontrun-
ners is then guaranteed to win unless there is an
exact 3-way tie. With rational Plurality voting, the
same is true. In rational Bullet voting, rational vot-
ers generically would always shoot down their least-
liked among the 2 frontrunners, since a bullet for a
non-frontrunner would, generically, be exponentially
more likely to be “wasted,” so the non-frontrunner
would be guaranteed to win!13.)

2. Range voting allows scaled utility voting but Borda,
Plurality, Bullet, or Approval do not – so even if
all voters wished to be irrationally honest (sacrific-
ing strategy for the overall good of society) society
couldn’t gain the full benefits of their virtue, in those
systems.

3. Rational Borda, Plurality, and Bullet voters will not
be honest about their preference orderings in 3-way
elections (and it is very common for elections to be
3-way, or effectively 3-way). Meanwhile theorem 4
says range voters will be.

This ultimately traces to the fact that the 3-cube
has a flat face perpendicular to the directions of vot-
ing for or against the two frontrunners, so it “costs
the rational range voter nothing” (no decrease in
expected utility) to move his vote toward his fa-
vorite candidate, even if that candidate is a nonfron-
trunner – and indeed this is true even if he moves
his vote maximally so that it becomes of the form
(+1,+1,−1). Meanwhile, in Borda, Plurality, and

13Therefore, notice that, with Bullet voting and rational voters,
in a 3-candidate election, the pre-election polls would always be
wrong! I call voting systems with this property (that rational vot-
ers will tend to act in such a way as to invalidate pre-election poll
predictions) “suicidal.” It is an interesting question (§11) to try to
understand precisely which voting systems are suicidal and quan-
tify by how much. It could be argued that much of the analysis in
this paper – based on the assumption that rational voters will act
as though they believe the polls are accurate reflections of what the
other voters will do – would be invalid in suicidal voting systems.
Then my arguments that, e.g., range voting is “best” among COAF
voting systems, are undercut, and would need to be weakened to
“best among non-suicidal COAF systems.” To respond to that, I
now argue that suicidal voting systems are, inherently, bad voting
systems. This is because, in order for a system to be suicidal, it
has to be highly manipulable by dishonest strategic voters, and
highly unstable and vulnerable to rumors percolating among the
rational voters and affecting their strategic decisions. Therefore,
range voting is presumably better (in some sense I am admittedly
leaving vague and intuitive) than suicidal COAF voting systems,
also, and so, really, my advocacy of range voting is not undercut.

Bullet, any attempt to grant your favorite candidate
(if not one of the 2 frontrunners) your maximum
vote, will force a decrease in your vote difference
between the two frontrunners. This decrease is ex-
ponentially more likely, generically, to hurt you than
the likelihood that your increased vote for your fa-
vorite will help you – so, rationally, you won’t do
it.

In the light of Donald Saari’s [22] love of the symmetry
properties of the c = 3 Borda voting system (cf. §9.6), it
perhaps is of interest to note:

Theorem 5 (Symmetry in 3-way elections) In a 3-
way election, range voting has the same symmetries as
the Borda scheme.

Proof: Both have sets S defining regular hexagons in
the x1 + x2 + x3 = 0 plane; it is just that the Borda
and Range hexagons are rotated 30 degrees – dovetailed
– with respect to one another. QED.

For more discussion of Borda see §9.6.
The net effect of theorems 3-5 seems to me to indi-

cate that range voting is clearly superior to Borda and
all other COAF schemes in (c = 3)-way elections hav-
ing many well informed rational voters; and it also is
arguably (§4) optimal for honest voters too, for any c.

9 Comparison with previous work

There has been a tremendous amount of previous work
on voting systems [15][18][20][21][22][23].

Before I begin discussing voting system properties, let
me avoid some possible confusion by mentioning an im-
portant point that many authors, unfortunately, do not.
That is: we should consider each property in at least 3
scenarios:

1. Where the voters are “honest.”

2. Where the voters are “rational” and their prefer-
ences are judged from their expressions of them as
their votes. For many purposes this is effectively
the same thing as the preceding – we are essentially
pretending all the voters were honest.

3. Where the voters are “rational” but their prefer-
ences are judged from their true, privately known,
utilities. Although these are empirically impossi-
ble to assess, if we are considering voters abstractly
(or are generating artificial voters inside a computer
simulation), then it is entirely possible (and desir-
able) to consider them.

9.1 Nurmi’s list of voting system problems

H.Nurmi organized much of his book [20] into chapters
discussing one problem or another suffered by voting sys-
tems. Let us consider range voting’s behavior on Nurmi’s
problems.
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ch.4. Problem: many voting schemes can output non-
transitive “cycles” of preferences. This is no problem for
range voting (nor for any COAF system) because real
number < is transitive. Also, if range voting is regarded
as outputting only 1 winner, not a rank ordering, that is
another reason it is no problem.
ch.5. Problem: Will a “Condorcet Winner” CW (who
would win all pairwise head to head elections) always
win? Answer: No (however, if CW were selected based
on vote vectors, then Yes since < is transitive for reals).
Proof: For honest scaled utility voters: If 51% of the
voters think CW is highest utility, but only by a little,
while 49% of the voters think CW is lowest utility, by a
lot, then CW can (and should, for the good of society)
lose in a (≥ 3)-candidate election.

For rational range voters: When the rational voter is
deciding what to do using the procedure in §5, eventually
he will mentally pair CW versus another candidate (or
weighted averge thereof), and hence CW will get a +1
vote in more than half the range votes, say 51% of them.
But meanwhile, if the two frontrunners in the polls are
A and B, and 73% of the voters think UA > UB , then
A will get +1 in 73% of the range votes. In that case
A would win the election and CW would not. (This is
probably a bad thing.) QED.
ch.6. Monotonicity? If a voter changes a preference re-
lation UA < UB to UA > UB , will that increase (anyway
never decrease) the probability A wins? And will it al-
ways increase (or at least never decrease) the probability
B loses? Yes, this is true for range voting with either
rational (generically), or honest voters.

However (David Pennock remarks) If a new candidate
C is added, even if everybody hates C, then the results
between A and B might change (for rational range voters
influenced by adversarially chosen poll data depicting C
as a likely winner).
ch.7. Unanimity? If all voters agree on some order-
ing of the candidates, will that be the ordering output
by the voting system? For range voting with c ≤ 3
candidates, yes (conceivably the order would be am-
biguous due to a tie). But with c ≥ 4, not necessar-
ily: If each voter thinks the 4 candidate utilities are
UA = 0, UB = 9, UC = 100, UD = 11 where the can-
didates are ordered by decreasing likelihood of election
according to the pre-election polls, then rational range
voters will vote A = −1, B = +1, C = +1, D = −1,
mis-ordering UD > UB .

Here I’ve assumed that the rational voters are using
the Moving Average Strategy of §7, and I’ll continue to
assume this when constructing similar examples through-
out this section.

But even when c ≥ 4 and with adversarially chosen
pre-election poll data, the correct winner will always be
obtained by a range vote (by either rational or honest
voters) if there is a unanimous consensus that candidate
is best. (Conceivably it will be a tie.) This is despite pos-
sibly wrongly ordering the losers. (For rational voters,
Plurality and Borda do not have this unanimous-winner

property, but Bullet, in the absence of ties, does.)

ch.9. Problem: how to encourage voter honesty (many
voting schemes discourage it)? Well, of course, range
voting is exactly designed to be best possible in this re-
spect among a wide class of voting systems. Despite that,
it is not perfect, as is shown by the 4-candidate elec-
tion example above in which rational voters will, in their
votes, dishonestly indicate their ordering of two candi-
dates. But when c ≤ 3, rational range voters will be
completely honest about their relative preferences. In-
deed (this idea is due to Brams and Fishburn [5]) if each
voter’s candidate-utility vector ~U is “trichotomous” (i.e.
each Ui is in some voter-dependent 3-element set) then
each rational range voter will always produce a vote ~x
compatible with his ordering of the candidate utilities
Ui.

It is not surprising that rational voters will sometimes
be dishonest about their preference orderings in (≥ 4)-
candidate range voting. This is because Gibbard [14]
showed that rational voters must sometimes be dishon-
est in any deterministic non-dictatorial voting scheme
with ≥ 3 possible outcomes. Gibbard then went on to
show that non-deterministic voting systems were possible
in which rational voters would always be honest about
their preference orderings, indeed for every possible value
of c, the number of possible election outcomes. Unfor-
tunately (Gibbard showed) there are exactly two such
systems (and probabilistic mixtures of them of the form
“use system #1 with probability p, otherwise use system
#2”), and neither is very attractive:

1. (Random dictator) Your vote is the name of one
candidate. One out of all the V votes is selected at
random as the winner.

2. (Majority choice on random pair) Your vote is a
permutation ordering all c candidates. Two of the
c candidates are then selected at random and the
winner is the more preferred among these two can-
didates.

Unfortunately, Gibbard said, “clearly” these systems are
unacceptable in practice “because they leave too much to
chance.” (The ith of these two systems is easily capable
of electing the ith-worst candidate, who might have un-
boundedly worse utility than any candidate who could be
elected by a deterministic procedure. See also our Monte
Carlo experiments in §10.) In view of Gibbard’s dishon-
esty theorem, theorem 4 does surprise us – shouldn’t it be
impossible? The resolution of this paradox is that range
voters do not provide 3-permutations as their votes, as
Gibbard demanded – they provide 3 real numbers. For
rational voters, some ordering of these three numbers us-
ing “≤” will be compatible with the true ordering (using
“<”) of this 3-permutation. This is a slightly weakened
form of “honesty.”
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9.2 Some other properties voting systems may have

Mike Ossipoff made a list on his web page of his favorite
properties of voting systems. Ossipoff calls range voting
the “Olympic 0-10 system” since it is the system (based
on the interval [0, 10] rather than [−1,+1], which makes
no difference) used by judges of figure skaters and gym-
nasts in the Olympics. Let us consider range voting’s
behavior for Ossipoff’s property list.
FB: Favorite betrayal: Does the voting scheme some-
times force a rational voter to give his favorite candidate
less than the maximum vote? No: Rational range voters
will not betray their favorites.
ML: Majority loser: If 51% of voters rank a candidate
last, can he win? Related is: Condorcet loser: Can a
candidate who would lose every pairwise election, win?

Ossipoff feels that neither ML or CL are very impor-
tant in practice, since they pertain to unlikely embar-
rassments. For the following voting systems the answers
to both questions are the same:

Range (rational voters): No14.
Range (honest voters): Yes. (However, if CL were

selected based on ignoring all coordinates of all vote vec-
tors, except for one coordinate pair, to determine the
pairwise election losers, then No since < is transitive for
reals.)

Example proving this: Suppose 51% of voters think
ML is lowest utility, by a little; 49% think he is highest
utility, by a lot. This example is very important because
it demonstrates that the ML and CL criteria are poor
ones – in this example the Majority Loser should win, for
the overall good (i.e. summed utility) of society. QED.
UD: Unanimous domination: If it is unanimously
agreed that UA < UB , can A still win? Answers: Range
voting with honest voters: No. Range voting with ra-
tional voters: Yes (but not in (≤ 3)-candidate elections,
unless there is a tie).

Proof: Let the candidates, in decreasing order of elec-
tion likelihood according to the pre-election polls, be
A, B, C, D, E, F . Suppose 25% of the voters think
UA = +10, UB = +11, UD = −10, UF = −10, 25% think
UA = −10, UB = −11, UD = +10, UF = +10, 25% think
UA = +2, UB = +1.99, UD = −15, UF = −15, and 25%
think UA = +1.99, UB = +2, UD = −15, UF = −15
and all voters agree UC = +1 > UE = −1. Then the
4 respective kinds of voters will vote (−,+,−,−,−,−),
(+,−,+,+,+,+), (+,−,−,−,+,−), (−,+,−,−,+,−)
for (A,B,C,D,E, F ) and hence the election will be won
by E, despite the unanimous agreement that UC > UE .
(For the validity of UD for (≤ 3)-candidate elections, see
theorem 4.) QED.

9.3 More properties

I’ll now list some other properties voting systems can
have. In the Ossipoff list in §9, voting systems “passed”
a criterion (such as FB) if their answer to the question

14Proof: Mr. Loser will get a −1 vote more than 50% of the
time; the winner (in the Moving Average Strategy) won’t. QED.

was “no,” otherwise they “failed.” But in the yes/no
questions in the list below that is reversed: pass=yes,
fail=no.
Wk: Work: How much work does it take to adminis-
ter an election? For additive schemes, the work is small,
since each voting site only needs to transmit the sum of
its vote vectors (c numbers) to, the central agency. For
the Condorcet Least Reversal system, the work is larger,
since

(
c
2

)
numbers (pairwise comparison vote counts) may

need to be transmitted and stored. For the STV sys-
tems, the work can be far larger, since apparently either
c! counts (one for each c-permutation) need to be trans-
mitted to (and stored at) the central computing agency,
or all V votes (V c numbers) need to be transmitted and
stored. (With c = 12 and V = 108, V c = 12 × 108

and c! ≈ 4.8 × 108.) In my opinion, this is so severe an
indictment of STV systems that it removes them from
contention with additive systems.
H3: Honesty in 3-way elections: Will voters choose
to be honest about their preference orderings, when vot-
ing?
MI: Maximum information: Will voters provide
“maximum information” (i.e. provide their opinion of
the maximum possible number of candidates) in their
vote? [Only range voting really passes this test, cf. the-
orem 3, but the systems allowing c-permutations as votes
arguably permit more information in votes than systems
such as Bullet.]
Mo: Monotonicity: Is it true that if a voter changes
a preference relation UA < UB to UA > UB , that cannot
decrease the probability A wins, and cannot decrease the
probability B loses?
IV: Incentive to vote honestly: Is it true that your
participation as an honest voter cannot decrease the ex-
pected utility (by your utility measure) of the election
outcome (versus not voting at all)?

[Always true for additive systems. However, both Mo
and IV are false for Hare-STV voting [6][9] and Con-
dorcet Least Reversal voting.]

Mo and IV may be very important properties for a
voting system to have, since without them, people may
be discouraged from participating as voters at all.
SU: Scaled Utility voting: Is scaled utility voting pos-
sible? Are there continuous degrees of freedom allowing
honest voters to express continuous changes in their per-
ceived utilities for the candidates?
UW: Unanimous winner: Does a unanimous consen-
sus winner (whom all voters agree, has maximal utility)
always win?
CN: Consistency: A voting system is “consistent” if
when the electorate is divided arbitrarily into two parts
and separate elections in each part result in the same can-
didate’s election, then an election of the entire electorate
also elects him. (If a voting system is not consistent than
it is especially subject to manipulation by strategically
configuring election districts. All additive systems are
automatically consistent – at least if we ignore consider-
ations of different strategic decisions being made if the
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voters knew their votes were not going to be used in a
larger election but only in a smaller election, and if the
poll results they based their strategies differed for the
two sub-electorates.)
CW: Condorcet winner: Will the Condorcet winner
(who would win any pairwise election) win the election?

[Note: in any additive scheme if the CW were judged
from the votes, this is true. To make it interesting we
instead judge the CW from the voters’s private mental
utility values. Then as I’ve said I do not agree voting sys-
tems “should” always “pass” the CW test, since the best
summed-utility candidate is fully capable of not being
CW, cf. end of §10.7.]

9.4 Table summarizing properties of 15 voting systems

Here is how 15 of the voting systems mentioned in this
paper act with respect to these properties.

Key to the table: Properties are listed roughly
in decreasing order of how important I think they are
in practice. For Wk, MI: L, M , H, denote low, medium,
and high work and information/vote. For other columns:
P, F, and . denote “Pass,” “Fail,” and “inapplicable.”
P-: worse than P since passing this test is only possible
when ties are broken in unlikely ways. ?: Unknown,
insufficiently well defined, and/or conjectural.
*: In these two voting systems, winner is partly chosen
by random chance.

voting --------property (acronym)---------
system Wk FB H3 MI Mo SU IV UD CW UW ML CN
------ -- -- -- -- -- -- -- -- -- -- -- --
RaH L P P H P P P P F P F P
RaR L P P H P . . F F P P P
CLRH M P P M F F F P P P P F
CLRR M F? F M? F? F . P? F? P? ? F?
STVH H P P M F F F P F P P F
STVR H F? F M? F? F . P? F? P? P? F?
PlH L P P L P F P P F P F P
PlR L F F L P F . F F F P P
BoH L P P M P F P P F P F P
BoR L F F M? P F . F F F F P
BuH L P P L P F P F F P- P P
BuR L P F L P F . F F P- F P
RaDi* L P P . P . P P F P F F
RaPM* L P P . P . P P P P P F
CopeH M P P M F F F P P P P F

(However, I do not agree that the CW and ML tests
should be “passed;” illustrative example of why in §9.1.)

Voting systems (definitions in §3, 3.1, 9.1):

RaH Range(Honest)
RaR Range(Rational)
CLRH (Condorcet’s) Least-Reversal(Honest)
CLRR (Condorcet’s) Least-Reversal(Rational)
STVH Hare Single-Transferable-Vote(Honest)
STVR Hare Single-Transferable-Vote(Rational)
PlH Plurality(Honest)
PlR Plurality(Rational)

BoH Borda(Honest)
BoR Borda(Rational)
BuH Bullet(Honest)
BuR Bullet(Rational)
RaDi (Gibbard’s) Random Dictator
RaPM (Gibbard’s) Random Pair Majority
CopeH Copeland(Honest)

I now sketch proofs for some of the entries (all the
difficult ones) in this table which have not already been
proven.

CLRH is not monotonic: Suppose you think UA > UB .
Then your vote can cause the number of reversals needed
for A to win (if you think UX , UY > UA and so does
society) to increase by more than the number of reversals
needed for B to win (if society says UB > UX , UY ; this is
entirely possible since the digraph can have nontransitive
cycles). QED.

CLRH is not consistent: Suppose society 1 says A loses
since the societal judgement is X > A with margin 10
votes, while meanwhile B wins (since B needs only 1 vote
reversed). Suppose society 2 says A loses since the soci-
etal judgement is Y > A with margin 10 votes. Suppose
B also wins (since B needs only 1 vote reversed) in so-
ciety 2. Then in the disjoint union of society 1 and 2, it
is entirely possible that the combined societal judgement
is A > X and A > Y with margin, say, 17 votes each,
so that A is the winner, requiring zero vote reversals, in
the combined society (whereas B still requires reversing
2 votes).

CLRH also disobeys IV for the same reason. Similar
examples show Copeland disobeys IV, Mo, and CN.

STVH: The Majority Loser ML cannot win. Proof:
Suppose he can win. Then eventually it gets down to
1 opponent versus ML, after everybody else has been
eliminated; then ML loses. QED.

STVH: Condorcet winner CW can lose: Suppose CW
is 2nd ranked by all voters, with the other c−1 candidates
splitting the 1st rankings evenly. Then CW is eliminated
in round #1. QED.

PlR: UW (and hence CW) can and will lose if he is
not one of the two frontrunners, since it is not rational
to vote for anybody besides one of the two frontrunners
(generically). QED.

STVH: UD is valid: If all voters agree UA > UB , then
B will be eliminated since not top ranked by anybody.
QED.

PlH: UD is valid: If all voters agree UA > UB , then
B cannot win since gets no votes. QED.

BoH: CW can lose if 49% of voters think CW is bot-
tom ranked, 51% think top ranked, and meanwhile some
other candidate is always in 1st or 2nd place in all voter
rankings and hence wins. QED.

BuH: CW can lose: for same reason as BoH.
H3 is false for Condorcet Least Reversal: The fact that

voting dishonestly is sometimes strategically wise in 3-
candidate elections, is a consequence of Gibbard’s theo-
rem (see my discussion of ch.9 in §9.1). A typical specific
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example is shown in figure 1, where it pays to dishonestly
rank the opposing frontrunner artificially “last.”

Figure 1: Suppose the pairwise margins of the rest of so-
ciety’s votes (→ points to more preferred) are as shown.
Then B would win a Condorcet Least Reversal election
(the 50 would be reversed). Now suppose you prefer C
over B over A. If you say so honestly in your vote and
add that vote to the rest of society, then we get 52, 51,
776 and your vote has no effect. If you dishonestly pre-
tend to prefer A over C over B, then C wins (margins:
50, 51, 778). Thus, in the Condorcet Least Reversal sys-
tem, voting for your favorite actually can cause him to
lose!

H3 is false for Hare STV: This again is a consequence
of Gibbard’s theorem. But Joe Dee worried me by say-
ing: “[For 3-candidate Hare STV] Consider the voter who
prefers A over B over C. There seems to be no harm to
that voter under STV if he votyes honestly because... if
A gets eliminated the vote goes to B.”

If it is assumed that every B supporter has A as his
second choice, and every A supporter voter has B as
second choice, then Dee is right: there is no penalty for
honesty. However, if there are also many voters who
prefer B to C to A (and say so in their votes), then
by being honest our voter risks splitting the A-B vote,
causing B to be eliminated in round 1. Then in round 2,
not all the B votes will be transferred to A – some will
instead go to C – in which case, A could then lose the
second round and C would win.

Numerical example: suppose the votes among the 348
other voters are C > A > B: 150; B > C > A: 50;
A > B > C: 99; B > A > C: 49. In this case our voter’s
1 additional A > B > C honest vote would cause B to
be eliminated in round 1, at which point C would beat
A in the next and final round by 200 to 149. However,
if our voter had dishonestly voted B > C > A, then A
would have been eliminated in round 1, at which point
B would win the final round versus C, 199 to 150. In
this case, our voter’s honest C-last vote actually caused
C to win15! In this example, the alternative dishonest
vote B > A > C also works; thus here again, artificially

15In this example, the Condorcet digraph again exhibits a non-
transitive cycle of preferences; reversing the least-margin prefer-
ence (B-C) according to Condorcet’s prescription, would result in
a C victory (with A second). But Borda would have resulted in a
tie for the lead between A and B 497 to 497 (vs. 350 for C) – and
our extra voter’s vote would break this tie.

ranking the most-disliked (C) of the two frontrunners
(B,C) artificially “last” is a best strategy.

Conclusion: it is not always strategically best to be
honest in one’s 3-candidate Hare STV, or Condorcet-LR
vote. That is also true for any other ranking-as-vote
system, by Gibbard’s theorem; but it does make sense to
be honest, always, in 3-candidate range voting.

9.5 Arrow’s impossibility theorem and its ilk

K.J.Arrow won the Nobel prize in economics substan-
tially for his elucidation of “Arrow’s impossibility the-
orem.” This theorem, in a form stated and proven by
P.Fishburn [11], is as follows.

Theorem 6 (Arrow) Consider the following assump-
tions about a voting system intended for V voters con-
sidering c candidates.
A1: V <∞.
A2: c ≥ 3.
A3: All candidate preference orderings are admissible for
each voter.
A4: If all voters agree UA > UB, then the output of the
voting scheme will be an ordering of the candidates in
which A > B.
A5: Let there be two sets of V voters each. Suppose
the ith voter in set 1 has the same relative ranking of A
versus B as ith voter in set 2, for all i. Then the vot-
ing scheme on set 1 will come to same conclusion about
A < B or A > B as the voting scheme on set 2.
A6: No dictator (a voter such that if he says UA > UB
then the voting scheme will conclude A > B, for all A,B)
exists.
Then: A1-A6 are inconsistent.

Remark: Fishburn also showed A2-A6 are consistent,
but Kirman & Sondermann [16] argued that the voting
schemes embodying A2-A6 with an infinite number of
voters would contain “effective” dictators.

Assumptions A1-A6 seem to be extremely reasonable
properties to demand of a voting system, so Arrow’s the-
orem seems extremely depressing. How, then, can I be
making claims that range voting is an excellent voting
system, if there cannot be an excellent voting system?
What is the relationship between Arrow’s theorem and
range voting?

First, let us criticize the underlying model of a “voting
system.” Arrow and friends all employ a model which
is a map R1 × R2 × R3 × · · · × RV → R where Ri
is a c-permutation encoding the preferences of voter i,
i = 1 . . . V , and R is another rank ordering, namely the
“election result.” Then they show no map satisfying A1-
A6 can exist.

Range voting does not need to (and in my point of view
in the present paper, does not) live inside this model.
It does not output a permutation; it is only interested
in (and the voters are only interested in) finding the 1
winner. Nobody cares about ordering the losers16. In

16S.J.Brams has complained that he cares about loser-
performances because
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that case A4 need not apply.
This “output format” objection is overcome in a dif-

ferent version of Arrow’s theorem attributed [23] to
A.Gibbard in 1969 (Sen says there is a proof on p.76-
77 of [24]):

Theorem 7 (Improved Arrow) Consider a voting
system which inputs V preference permutations and out-
puts a nonempty strict subset W of the c candidates (the
“winner” subset). Consider these axioms.
A1′: V <∞.
A2′: c ≥ 3.
A3′: All candidate preference orderings are admissible
for each voter.
A4′: If every voter thinks UA > UB, then A ∈ W and
B 6∈W .
A5′: Let there be two sets of V voters each. Suppose the
ith voter in set 1 has the same relative rankings within
some subset S of the candidates as does the ith voter in
set 2, for all i. Then the voting scheme on set 1 will
generate the same S ∩W as the voting scheme on set 2.
A6′: No voter has “veto power,” allowing him, for any
A,B, to singlehandedly prevent {B ∈W and A 6∈W}.
Then: A1′-A6′ are inconsistent.

But, despite this change of the output from an order-
ing to a winner subset, the input of the voting system
remains wrong. In my model, the ultimate input to the
system is not c-permutations; instead there is more: ac-
tual numerical utility values.

Since several utility vectors can be compatible with
the same preference ordering, it is easily possible17 to

1. Losers come back to win subsequent elections, because they
performed well enough in earlier ones.

2. They inform winners about the preferences of their nonsup-
porters and may influence which way he should “lean” to
appease them.

For these reasons Brams feels motivated to vote dishonestly even
in a 3-candidate range election. My response is that indeed every-
thing becomes mathematically disgusting when one is considering
elections in which loser-performances affect utilities. For example,
in the Bush-Gore-Nader 2000 election, I wanted 3rd-place candi-
date Nader to get > 5% of the votes, which would have assured
him of getting millions of dollars in retroactive campaign financ-
ing. Thus I cared about this particular loser-performance. In my
state of New Jersey, Gore was well ahead of Bush in the polls, so
my vote for Gore or Bush was extremely unlikely to have an effect,
say probability≈ 10−200. Meanwhile Nader was going to get only
2-3% of the vote (said the polls) so it was also extremely unlikely
Nader could reach 5% to get the money – say 10−100. But even
if money-for-Nader was an event 106 times less important to me
than deciding the election winner, the fact that 10−100 � 10−194

indicates that my most rational vote would be for Nader! The
point is that the combination of

1. generically exponentially tiny event probabilities,

2. the presence of payoffs based on non-winner results as well as
just the winner (even very much smaller payoffs!)

will lead to incredibly cockeyed random-seeming thinking among
strategic voters in all COAF systems, and will destroy the simplic-
ity of rational-voter thinking in those systems that had arisen from
(1) alone (§5). By assuming (as I do throughout this paper) that
only the winner matters, such insanity is avoided.

17Example. Let there be two sets of two voters. The utility 3-
vectors for the 3 candidates on voter-set 1, are (0, 1, 2) and (0, 3, 1)

construct examples of two sets of voters violating A5
(and A5′) in which, for the overall good (utility-sum)
of society, the winners really should differ. Thus, with
utilities as input, it is certain that demanding A5 or A5′

is not always desirable; it actually causes societal harm.
To defeat this objection, I suppose one might try to prove
a new impossibility theorem using a reformulation of A5
based on utilities, e.g.:
A5′′: Let there be two sets of V voters each. Suppose
the ith voter in set 1 has the same utility values UA and
UB for two candidates A,B as does the ith voter in set
2, for all i. Then the voting scheme on set 1 will come
to same conclusion about A < B or A > B as the voting
scheme on set 2.

But: no such impossibility theorem based on A5′′ can
hold because honest (unscaled) utility voting (§4) in fact
does satisfy A1-A4, A5′′, and A6.

Another criticism of A5 is: in my model, in fact strate-
gic voters will consider their actual utility values and
multiply them by probabilities of various election results
(their analysis vastly simplifies when V →∞ since these
probabilities go exponential) when deciding how to vote.
Thus they genuinely will change their voting decisions
even without any change in their preference permuta-
tions, just changing their utility values. Arrowists do
not conceive of that possibility.

I think this willful ignorance has a lot to do with why
Arrow gets into problems with “nontransitive preference
cycles.” Also, since I assume strategic voters are aware of
pre-election poll statistics, my model has both different
input (voters’s mental utilities and the pre-election poll
mean and covariance data) and different output (name
of 1 winner), than Arrow’s model of a voting system in
which inputs are actual votes, and the output is a rank
ordering.

Strategic voters certainly can and do look at the pre-
election poll data and consider the status of other can-
didates besides A and B, when they are deciding how
to vote about A and B. Thus it is foolish to assume
(Arrow’s A5) that they do not, can not, or should not.
A5 is totally foreign to my picture where I consider pri-
vate mental utilities as the true input to the system, not
actual votes.

So the real problem with these theorems seems to be
assumption A5 (or A5′).

Summary: Hopefully this has cleared the smoke from
the air about Arrow’s theorem. One can and should
dismiss Arrow’s assumption A5 (or A5′) and the model
in which the input is preference permutations instead of
utilities. (Note: honest range voting satisfies all of A1′-
A6′ excluding A5′.)18 It then is possible to find adequate
voting systems, and among all such voting systems (or
some large subclass of them, such as COAF systems), we

and on voter set 2, are (0, 1, 3) and (0, 2, 1).
18If the voters are also assumed to have access to pre-election

poll results which they can use to vote “strategically,” then A4
also needs to be dismissed and the model needs to be modified
even further. Also, I want to make it clear I am not claiming range
voting satisfies A5′′ – it doesn’t.
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can and should try to define and find the “best” one –
the goal of this paper.

9.6 Saari’s championing of Borda count voting

Donald Saari has championed “Borda count” voting
[21][22], the COAF system in which S is the c! permu-
tations of (0, 1, 2, . . . , c − 1). But I disagree. I feel that
Borda is clearly not as good a system as range voting
for either honest voters or rational voters. Honest vot-
ers would like a system permitting scaled-utility voting.
Rational voters would be severely frustrated by their in-
ability to elect, via a 3-candidate Borda count vote, the
candidate unanamously top-ranked by all voters, unless
he is one of the two frontrunners in pre-election polls19.

Two of the reasons Saari likes Borda voting are: (1)
He considered the class of Weighted Positional Voting
(WPV) systems. He showed Borda (with honest vot-
ers) is the only fair WPV system also satisfying “rever-
sal symmetry.” Saari then considered the “dictionary”
mapping the voters’s candidate preference orders (i.e. V
permutations of the c candidates) into the c-permutation
output by the voting system. (2) The more entries such a
dictionary could have, the more Saari considered a vot-
ing system “paradoxical.” Saari showed that Borda is
the uniquely least paradoxical WPV system.

Let me counterargue.

1. I’ve worked with COAF voting systems, a highly
general class. Because WPV systems are merely
an infinitesimally tiny subclass of COAF systems
(namely the ones with S being the permutations of
one fixed vector (W1,W2, . . . ,Wc) of constant “po-
sitional weights”), there is no reason to care about
optimizing over them if we can instead optimize over
COAF.

2. In particular, honest range voting also obeys fairness
and reversal symmetry. This would not be possible
(by Saari’s theorem) if honest range voting were a
WPV system – but we evade Saari’s theorem by
working in the wider class of COAF systems (cf.
theorem 5).

3. It is wrong to model the input to the voting system
as being V preference permutations. Really, the true
input is V real utility c-vectors. Saari, and every
WPV system, ignore (and prevent the voter from
honestly expressing) the fact that a voter cares more
about making A beat B if UA−UB = 999, than that
voter cares about making B beat C if UB − UC =
0.01.

19Admittedly, such a candidate would probably be high ranked
in the polls. I am simply trying to dramatize the fact that, in
3-candidate Borda elections, the two candidates with the most ad-
vertising and loudest propaganda have essentially 100% chance of
being elected purely because this loudness causes rational voters to
think they have a high chance of being elected, totally independent
of those two candidates’s actual or perceived virtues.

4. Nobody cares about rank-ordering the losers! We
care about finding the winner. (In fact, I do not
know of any use for a voting system outputting a
full ordering.) So Saari’s “dictionary” is dominated
by irrelevancy.

5. Saari ignores the reality that voters are rational –
instead modeling them as imbeciles who always vote
“honestly,” no matter how tactically stupid that is.

Saari’s paradox theorem is beautiful, but do not be de-
luded into thinking it tells us much about how to build
a good voting system. It doesn’t.

9.7 Other work – computational complexity

Our point has been that range voters have both incen-
tive and opportunity to provide a lot of honest informa-
tion in a range vote. Bartholdi and Orlin [1] had the
idea that a different way to prevent voters from being
dishonest-rational would be if the computational com-
plexity of determining how to be a rational voter were so
high, that voters would simply give up on trying to figure
out “tactics” and (as a last resort) simply vote honestly!
They proved that it is NP-hard [13] to determine how to
change your vote in the “single transferable vote” system
in order to change the winner.

This was a cute idea, but: do not be deluded into
thinking such results have anything to do with building
a good voting system. This is because none of these
NP-hardness results hold in the limit V → ∞ (large
number of voters) with the number c of candidates held
fixed (or, more generally, with c = O(log V )). Indeed, in
this limit (which is, apparently the one relevant for elec-
tions in which humans participate) these computational
tasks are easy, i.e. linear or even very sublinear time
(or, more generally, in P). Also, even without a bound
on c, it is usually still easy to think of a dishonest vote
which seems to be more utilitarian than the true honest
vote, despite difficulty in finding the optimal way to be
dishonest. Thus, dishonesty is in no way prevented or
discouraged.

These arguments apply with special force to rebut sim-
ilar criticisms by Bartholdi et al. [2] of various voting sys-
tems for which it is NP-complete to determine the win-
ner! For example, they showed NP-hardness for a version
of Condorcet least reversal voting in which the least num-
ber of vote reversals possible were employed so that the
graph of pairwise elections would become acyclic. Again,
do not be deluded into thinking this matters, because the
elections in human history all have had a small enough
number of candidates that deciding the winner is easy,
so this is no reason to rule out these voting systems.

Incidentally, the least-reversal Condorcet scheme, de-
fined in §3.1 and studied in my Monte Carlo experiments
in §10, involves only determining one winner, with no at-
tempt to find an acyclic ranking of all the candidates, and
it is trivially in P to find the minimum number of vote
pair-preference relation reversals needed to accomplish
that goal. My form of Least Reversal voting, however,
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obviously is NP-complete (which was not mentioned by
[2]) if it is used to choose w out of c “winners.” That is
because finding the required min-weight arc set is NP-
complete (although with w = 1 it is always linear time)
because of an easy reduction from graph partition-

ing [13]. However, for elections with c ≤ 30 candidates,
this is no obstacle since it is feasible to consider all

(
c
w

)
node-subsets exhaustively.

10 Monte-Carlo experimental comparison of

different voting systems

There is an extremely simple and obviously best way to
compare voting systems. We simply construct, inside
our computer, V artificial voters and c artificial candi-
dates. By some randomized algorithm each voter assigns
a utility to each candidate. (For the methods I used for
assigning utilities, see §10.2.)

Now, we perform an election. Since, in our artificial
election (unlike real elections) we know all the true utili-
ties, we know exactly how much utility loss (summed over
all voters), society suffered, for any given voting system,
versus the hypothetical election of the true, maximum
summed utility candidate. Call that utility difference,
the “regret” of that voting system. We can perform a
million simulated elections to compute the expected re-
gret, to high accuracy, for each voting system we pro-
gram. These regrets provide a simple way to compare
voting systems.

10.1 Related previous work

This idea (of using Bayesian regret as a quality measure
for voting systems, and using a computer Monte Carlo
study to evaluate the regrets) was not first invented by
me. It is present, e.g., in Bordley’s 1983 study [4] and is
there attributed, at least in part, to J.C.Harsanyi in 1955.
Some previous computer experiments [18] unfortunately
used the “Condorcet efficiency,” a measure intentionally
contrived to cause Condorcet’s voting system to be best
possible, and having, in my opinion, no particular value
aside from that. (Indeed, the “Condorcet winner” can
be non-best from a utility standpoint, a fact evident in
my study’s numerically nonzero Bayesian regret values
in 2-candidate elections. In my studies, this happened
about ≈ 10% of the time.) Another interesting computer
study, but aimed at an entirely different goal (empirical
assessment of the probabilities of various kinds of “voting
paradox” scenarios, rather than attempting to compare
different voting systems) was by Fishburn [12].

These previous computer studies had the following de-
merits compared to my study here.

1. They all were far smaller than mine, e.g. involving
a small subset of my voting systems. My study is
the only one with a documented random number
generator, and involves ≥ 400 times more simulated
elections. (This decreases the statistical margin of
error by a factor of ≥ 20. All my regret data have

90% confidence error bars well below 1%.) Thus it
should entirely supercede them.

2. They all got inconclusive results, i.e. were unable
to confidently identify any single voting system as
“best.” On the other hand, my study concludes that
range voting was always best for either honest or
strategic, voters in all 144 different election scenar-
ios tried. This is presumably because none of the
previous studies included range voting as a partici-
pating voting system. (If I had omitted range vot-
ing, I too would have got similar inconclusive re-
sults.)

3. Both Merrill’s [18] and Bordley’s [4] studies only al-
lowed “honest voters,” without allowing “strategic
voting.” This detracts heavily from any claim those
studies can have, to applicability in the real world.

4. Merrill’s utility based substudy is suspicious be-
cause it was unable to detect the fact that, e.g. 2-
candidate majority vote is non-optimal from a util-
ity standpoint, i.e. has nonzero Bayesian regret.
(All his data for 2-candidate elections had “100.0%
social utility efficiency,” in his terminology.) That
suggests that Merrill’s computer program had bugs.

5. My study involves a superset of the utility-
generating methods (see §10.2) used previously, and
also is the first (§10.8) to allow “voter ignorance.”

It may also be interesting to try to evaluate the mer-
its of voting schemes in genuine human elections, rather
than in artificial computer generated ones. However,
this is far more difficult and expensive exercise fraught
with error and doubt. The largest attempt to do this
[10] (based on 37 and 92 contemporary elections within
British trade unions and other organizations) concluded
that Plurality was worse than 5 other procedures con-
sidered but none of these 5 could be clearly favored over
any other. These top 5 included Borda, Approval, and
Hare-STV. (Range voting was ignored.) It may also be
of interest that the Hare-STV system is employed in na-
tional elections in the Republic of Ireland, where it is
mandated by the (1937) Constitution. In two nationwide
referendums (in 1959 and 1968) the Irish were offered the
option of abandoning STV, and both times chose to keep
it.

10.2 The ways I used to assign utilities

The simplest way to assign the c candidate utilities for
each voter is simply to use V c independent random de-
viates uniform in [0, 1]. I call this “random uniform util-
ities.”

Another way, which I call “issue based utilities,” is
as follows. Each of the c candidates is initially assigned
an I-dimensional vector of real numbers in [−1, 1], his
“stances on the I issues.” Each voter is also assigned
such an I-vector. The utility of that candidate for that
voter is then the dot product of their two issue-stance
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vectors, plus a random uniform deviate in [−1, 1]. (We
may then normalize these utilities by adding c and then
multiplying by 1/(2c + 2) so that every utility number
is in [0, 1]; such normalization enables comparison with
random utilities.) The “random utilities” method is just
the special case of the “issue based” method when I = 0.

Issue-based utilities tend, in the limit I →∞ of an infi-
nite number of issues, to a scenario I call “random normal
utilities:” use V c independent random normal deviates
(i.e. with probability density exp(−x2/2)/

√
2π).

In all my experiments I used a combination of the
UNIX “random” (“lagged additive Fibonacci” [17] with
a 256-byte [i.e. 64 machine word] state array, based
on the primitive trinomial x63 + x + 1 mod 2), UNIX
“drand48” (iterates x ← ax + cmod 248 where c = 11
and a = 25214903917), Park-Miller “minimal standard”
(iterates x ← 48271xmod 231 − 1) and Coveyou nonlin-
ear (iterates x← (x+ 1)xmod 264) generators. I took a
4-way combination by means of bitwise exclusive ORing
and modular summation because I did not trust any of
these generators individually.

10.3 The voting systems I tried

I programmed 30 different voting systems, listed below,
in addition to the “baseline” system, honest true-utility
voting, which as we’ve seen (§4) is the best possible vot-
ing system, provided the voters are honest. (One of the
advantages of artificial voters is one can make them hon-
est.)

(Baseline=Best-summed-utility winner; regret=0)
0. Honest range voting (scaled utility vote)
1. Honest Borda
2. Honest Condorcet Least-Reversal (CLR)
3. Honest Coombs STV (most least-liked candid

eliminated each round)
4. Honest Hare Single Transferable Vote STV

(least most-liked canddt eliminated)
5. Honest Copeland (win most pairwise elections)
6. Honest Dabagh point-and-a-half
7. Honest Black (if no Condorcet winner use Borda)
8. Honest Bucklin
9. Honest plurality+runoff for 2 top finishers
10. Honest plurality (1 vote for max-util canddt)
11. Honest bullet (1 vote against min-util cand)
12. Majority vote on random candidate pair
13. Random "dictator" voter dictates winner
14. Random winner
15. Worst-summed-utility winner
16. Honest approval (threshhold=avg canddt utility)
17. Strategic range/approval (average of

2 frontrunner utils as thresh)
18. Rational range/approval (threshhold=moving avg)
19. Rational plurality (vote for 1 of 2 frontrnnrs)
20. Strategic Borda I (1 frontrunner top, 1 bottom,

rest recursively)
21. Rational bullet (vote against 1 of 2 frontrnnrs)
22. Strategic CLR (strat same as 26)

23. Strategic Hare STV (strat same as 26)
24. Rational Borda (1 frontrunner max, 1 min, rest

using moving avg to decide if max or min vote)
25. Strategic Coombs STV (strat same as 26)
26. Strategic Borda II (1 frontrunner max,

1 min vote, rest honest)
27. Rational Dabagh point-and-a-half (moving avg)
28. Strategic Copeland (strat same as 26)
29. Strategic Black (same strat as 26)

For descriptions of these systems, see §3, §3.1, §9.1, §10.4.
For the regret tables output by my computer study, see
§10.7.

Systems 0-13 involve “honest” voters, who always or-
der their votes compatibly with their private orderings of
the candidate utilities. Indeed, in Gibbard’s systems 12-
13 (cf. §9.1), the rational voting strategy is honesty. Sys-
tems 14-15 are intentionally bad voting systems thrown
in merely to give the reader some idea of the scale on
the regret axis, i.e. system 15 intentionally maximizes
regret. Note that some of the worst voting systems, such
as strategic Bullet (21), are nearly as bad as picking a
random winner (14)!

Systems 17-29 involve “strategic” voters who take ac-
count of the pre-election polls when deciding how to vote
– so their votes may be “dishonest.” Since all my ran-
domized utility generators are symmetric under permu-
tations of the candidates20, pre-election polls would be
equally likely to return any ordering of the candidates,
so, without loss of generality, I always suppose those
polls had concluded that candidate 1 was the frontrunner
(most likely to win) candidate 2 was second, candidate 3
third,..., and candidate c last. We also will always assume
the poll data describes a spherically symmetric Gaussian,
simplifying strategy calculation (cf. §7). What I am call-
ing “strategic” voters is not necessarily the same thing as
what I have elsewhere called “rational” voters. Rational
voters choose the vote maximizing their expected utility
in some statistical model of the remaining voters. Strate-
gic voters try to be near-rational, but in the interests of
simplicity I have not tried always to find the exact opti-
mal vote, sometimes settling for a vote which presumably
yields higher expected utility than the honest vote, but
not as high as the rational vote. Of course, it is interest-
ing to study the effect of plausible but not optimally ra-
tional strategies; indeed that is a large part of the reason
to study honest voters. System 16 is actually on the bor-
derline between “honest” and “strategic” voting, since 16
is the most strategic form of honest approval voting, cf.
lemma 1, given that no poll-data is known. System 17 is
also on the borderline, since each voter always produces
an “honest” approval-type (i.e. ±1-vector) vote, but at-

20Thus all my simulated elections were non-generic. This is
necessary, of course, to get interesting results, since generic elec-
tions are exponentially boring. However, my elections with small
numbers of voters, since they exhibit large statstical fluctuations
causing vast (percentagewise) majorities to be common, may be
thought of as indicative of what happens in generic elections with
large numbers of voters. Thus, really, my data covers both gener-
icity and non-genericity.
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tempts to do so by choosing his utility threshhold (for
deciding whether to vote +1 or −1) strategically in view
of the poll results.

My strategies 22, 23, 25, 28, and 29 try to be hon-
est when in doubt about the most rational course of ac-
tion. Therefore, these strategies presumably provide a
lower bound on the regret of the same voting system with
true-rational voters (since, presumably, more voter hon-
esty results in smaller society-wide regret). Some “cali-
bration” of how much worse true rational voters would
make STV, Condorcet-LR, etc., for society, versus my
semi-honest voter strategies 22, 23, 25, 28, 29, may be
obtained by comparing strategy 26 with true-rational
Borda voting method 24.

10.4 More precise description of some of the strategies

Strategic Borda I (system #20): give the best of the two
frontrunners the max vote c − 1 and the worst the min
vote 0. Then proceed recursively on the remaining c− 2
candidates. (This is not the true-rational voter strategy
for Borda – for that, use #24).

Strategic Condorcet Least Reversal, Copeland, Black,
Hare & Coombs STV (22,28,29,23,25): give the best of
the two frontrunners the max vote and the worst the min
vote. Order the remaining c−2 candidates honestly. This
is a plausible-sounding strategy, since it maximizes the
chances that the disliked frontrunner will be eliminated
in some STV round and minimizes the chances the liked
frontrunner will be; similarly this minimizes the number
of Condorcet vote-reversals the more liked frontrunner
must endure, while maximizing this number for his op-
posing frontrunner.

System 18: this is the “moving average strategy” for
range voting, described in §7; similarly 24 is the moving
average strategy for Borda voting, 27 for Dabagh, etc..
Indeed, all the systems I have called “rational” above
are just the appropriate versions of the moving average
strategy for that COAF system.

10.5 How to obtain my computer program

Internet download from http:
www.neci.nj.nec.com/homepages/wds/votetest.c.

10.6 The numbers of voters, candidates, and issues

All 144 combinations of parameter possibilities with
V ∈ {5, 10, 20, 50, 100, 200}, c ∈ {2, 3, 4, 5}, and I ∈
{0, 1, 2, 3, 4,∞} (where I = 0 means using random uni-
form utilities and I = ∞ means using Gaussian-normal
random utilities) were tried. For each parameter set, a
huge number of randomized elections were run to find
the 22 expected regrets. Rather than give error bars
for each datapoint, I instead have simply tried to run
enough experiments to make the errors small. “Boot-
strap” tests21 indicate that 105 elections suffice to cause

21You can also make your own bootstrap error estimates by sub-
tracting twice the RandomWinner regret (system #14) from the

all regret values to have 90% confidence error bars all
better than ±1%. But the number of elections I used to
obtain each regret datapoint was larger than 105; rang-
ing from 666666 with 200 voters, to 2 · 107 with 5 voters.
I believe all my tabulated final regret values have 90%
confidence error bars ≤ 0.3%.

10.7 The results

For the full set of regret tables, see the separate data
sheets or the electronic version of this paper on my web
site22. Here are two typical regret tables – for the Monte-
Carlo runs with (V, I) = (20, 0) and (50, 2).

Random Utilities. (0 issues.) 20 voters.
Each candidate utility (for each voter)
normalized to lie somewhere in [0,1].
Each regret datapoint averages 4000000 expts.
system|2 canddts 3 canddts 4 canddts 5 canddts
------+--------- --------- --------- ---------

0 | 0.14203 0.09328 0.06659 0.04941
1 | 0.14203 0.14661 0.14023 0.13055
2 | 0.14203 0.18989 0.21179 0.22247
3 | 0.14203 0.21014 0.25329 0.28478
4 | 0.14203 0.21853 0.27591 0.32314
5 | 0.14203 0.17647 0.18645 0.18803
6 | 0.14203 0.14661 0.19632 0.26643
7 | 0.14203 0.18771 0.20312 0.20680
8 | 0.14203 0.26182 0.26740 0.26258
9 | 0.14203 0.21511 0.32407 0.42706
10 | 0.14203 0.26106 0.37712 0.48628
11 | 0.14203 0.29241 0.45289 0.60039
12 | 0.14200 0.50672 0.74236 0.91523
13 | 0.56227 0.84417 1.03011 1.16938
14 | 0.72907 1.09416 1.32965 1.50218
15 | 1.45800 2.18891 2.66019 3.00443
16 | 0.14203 0.14041 0.17883 0.20575
17 | 0.14203 0.22607 0.27907 0.31838
18 | 0.14203 0.22607 0.27853 0.31554
19 | 0.14203 0.50697 0.74282 0.91522
20 | 0.14203 0.50697 0.57875 0.70637
21 | 0.14203 1.09384 1.32964 1.50184
22 | 0.14203 0.50691 0.71089 0.86287
23 | 0.14203 0.50697 0.74282 0.91522
24 | 0.14203 0.50691 0.64678 0.70219
25 | 0.14203 0.50691 0.62443 0.57312
26 | 0.14203 0.79978 1.03564 1.20864
27 | 0.14203 0.50691 0.74282 0.91522
28 | 0.14203 0.50691 0.63935 0.75389
29 | 0.14203 0.50691 0.71089 0.86287

Issue Based Utilities (2 Issues). 50 voters.
Each candidate utility (for each voter)
normalized to lie somewhere in [0,1].
Each regret datapoint averages 2222222 expts.

WorstWinner regret (#15). Intuitively the RandomWinner regret
should have the largest additive error so this should yield an over-
estimate of every additive error.

22http://www.neci.nj.nec.com/homepages/wds/works.html
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system|2 canddts 3 canddts 4 canddts 5 canddts
------+--------- --------- --------- ---------

0 | 0.09374 0.07403 0.06165 0.05368
1 | 0.09374 0.10418 0.10413 0.10079
2 | 0.09374 0.12534 0.13967 0.14640
3 | 0.09374 0.15060 0.18827 0.21523
4 | 0.09374 0.15432 0.20058 0.23786
5 | 0.09374 0.12655 0.13838 0.14181
6 | 0.09374 0.10418 0.15821 0.22782
7 | 0.09374 0.12308 0.13239 0.13370
8 | 0.09374 0.26157 0.19968 0.22931
9 | 0.09374 0.15620 0.24117 0.31057
10 | 0.09374 0.21097 0.30492 0.37884
11 | 0.09374 0.27689 0.39935 0.50505
12 | 0.09381 0.33858 0.49621 0.61039
13 | 0.41922 0.62885 0.76357 0.86222
14 | 0.48946 0.73396 0.89227 1.00462
15 | 0.97846 1.46825 1.78438 2.01238
16 | 0.09374 0.10419 0.13888 0.16549
17 | 0.09374 0.15654 0.19923 0.23232
18 | 0.09374 0.15654 0.19886 0.23101
19 | 0.09374 0.33825 0.49653 0.61072
20 | 0.09374 0.33825 0.39428 0.47854
21 | 0.09374 0.73421 0.89223 1.00606
22 | 0.09374 0.33834 0.48312 0.58958
23 | 0.09374 0.33825 0.49653 0.61072
24 | 0.09374 0.33834 0.44268 0.48438
25 | 0.09374 0.33834 0.46003 0.41718
26 | 0.09374 0.53630 0.69482 0.80872
27 | 0.09374 0.33834 0.49653 0.61072
28 | 0.09374 0.33834 0.45364 0.54443
29 | 0.09374 0.33834 0.48312 0.58958

As you can see, honest range voting (#0) is the
minimum-regret system among the 31 tried, for every col-
umn in every table. Among the systems (#16-29) involv-
ing strategic voters, strategic range voting systems 16-18
also always outperform every other strategic system. All
this is true not just in the two tables I’ve shown here,
but also in the 34 other tables (with different numbers
of voters and/or different utility generators) I haven’t
shown.

The regret ratios can be large. For example, the
United States, by adopting Plurality voting, is presum-
ably suffering (assuming strategic voters) 2.3-3.0 times as
much regret as it could have suffered by using range vot-
ing, in 3-5 candidate elections. Assuming honest voters,
the USA is suffering 3-10 times as much regret as it could.
This is assuming that my 200-voter experiments suffice
to get a good enough approximation to the limiting situ-
ation with a huge number of voters. If this assumption is
wrong, then these regret ratios will (apparently) be even
larger and even more in favor of range voting – since the
ratios empirically increase with V when V > 15, accord-
ing to the table below:

Random-utility 4-candidate elections. V voters.
--honest-- regret --rational-- regret

V | range0 plur10 ratio range18 plur19 ratio

--- +------- ------- ----- ------- ------- -----
5 |0.03065 0.17480 5.70 0.14688 0.35431 2.41

10 |0.04582 0.26249 5.73 0.20410 0.53122 2.60
20 |0.06659 0.37712 5.66 0.27853 0.74282 2.67
50 |0.10698 0.61238 5.72 0.43077 1.16710 2.71
100 |0.15185 0.87716 5.78 0.60457 1.64639 2.72
200 |0.21542 1.25863 5.84 0.85423 2.32316 2.72

The regret caused by plurality voting is not just large
relative to range voting – it also seems large in any sense:
Compare rational plurality system #19 (or even honest
plurality, #10) with the election of the worst (#15) or a
random (#14) candidate (representing complete failures
of democracy). Strategic plurality is only about 3-5 times
better than simply electing the worst candidate.

Borda, STV, and Least-Reversal, although much
touted, are shown by my studies to suffer sometimes large
expected regret ratios versus range systems for strategic
(or honest) voters. Keep in mind that our regret values
for these methods are lower bounds23 on the true regret
since we have studied a voting strategy more honest and
less rational than the true-rational strategy. Thus the sit-
uation seems even more favorable for range voting than
is shown by my regret tables. This effect should be es-
pecially pronounced in the case of Coombs (cf. footnote
3).

A peculiarity of the experimental data which imme-
diately worried me is: The two strategic voting systems
17,18 almost always yield the same votes in my exper-
iments (consequently they have regrets identical to ≈
1%), despite the fact that one can construct examples24

of utility vectors that cause these two systems to yield
different vote vectors.

The explanation of this peculiarity is just that such
counterexample utility vectors arise rarely. With c ≤ 3
candidates, strategies 17 and 18 are identical and both
are honest. In votes among 4 candidates with random
utilities, strategies 17 and 18 yield different vote-vectors
only about once every 10 votes, and strategy 18 only
“dishonestly” misorders its votes with respect to the true
utility ordering, about once every 36 votes25. With 5
candidates, strategies 17 and 18 produce different vote
vectors more often (≈ 23% of the time) and strategy 18
produces a “dishonest” vote more often – but still, only
about once every 15 votes. (These figures all remain
approximately unaltered with issue-based utilities.)

This rarity goes a long way toward explaining why ra-
tional range voting (system 18) has so low regret: strate-
gic range voters are astoundingly honest!

There is another disturbing numerical pattern: the re-
grets for methods 19, 22, 23, and 27-29 are always the

23Conjecturally. But this conjecture seems very plausible and it
is entirely supported by the comparison of system 26 versus the
true-rational strategy 24.

24Such as ~U = (0, 9, 100, 11) where the candidates are ordered
by decreasing likelihood of election according to the pre-election
polls. In this case system 12 will vote (−,+,+,+) and system 13
will “dishonestly” vote (−,+,+,−).

25Of course, strategy 17 can never misorder its votes, but more
rational voters should prefer strategy 18.
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same to 5 decimal places (at least, if elections with ties
are removed). This is because:

Theorem 8 (The winner in 6 voting systems,
with strategic voters) Generically, strategic Con-
dorcet Least-reversal, Black, Dabagh vote-and-a-half,
Copeland, and Hare STV, (strategies 22, 23, 27, 28, 29
in our Monte Carlo study) and rational Plurality voting
(system 19) all will yield the same winner in a tie-free V -
voter election as V → ∞, namely: the majority winner
among the two frontrunners from the pre-election polls,
will always be elected.

Proof: For plurality voting, this was well known. For
Condorcet least-reversal: The most popular frontrunner
will be top ranked by more than 50% of strategic vot-
ers. Hence, he will win all pairwise elections, and hence
(since zero reversals will be required) the election. (This
is yet another illustration of the fact that making the
“Condorcet winner” win, as in property CW of §9.3, is
not necessarily a good idea.) Consequently the same is
true in Black’s system and the Copeland system. For
Hare STV: The two poll-frontrunners will garner all the
top-rankings from strategic voters in the Hare STV sys-
tem 18, thus never being eliminated until the final round,
whereupon the most popular one will win. For Dabagh
point-and-a-half: The most popular frontrunner will get
> 50% of the votes, which is too great a margin to be
outvoted by the combined winners of all the half-votes.
QED.
Remark. I consider this theorem very damning testi-
mony against all 5 of these supposed “improved” (versus
Plurality) voting systems. Although obvious in hind-
sight, it seems not to have been noticed previously. It
holds, not only for the voting strategy used in this Monte
Carlo study, but indeed for any strategy which begins by
assigning the two poll-frontrunners the maximum and
minimum votes (a plausible sounding strategy, which as
we’ve seen in lemma 1 is in fact the true-rational strategy
for COAF systems). This theorem also represents yet an-
other nail in the coffin for Bartholdi et al. [1]’s theory
that figuring out how to manipulate Hare STV system
by strategic voting would be too difficult, so that vot-
ers would not bother and would simply be honest. [Also
note: despite my disparaging remarks re the behavior of
Coombs’s STV system in the presence of strategic voters
in footnote 3, we now see that in this respect Hare’s STV
system can be even worse.]

Another important point I should mention (since it
significantly affects some statistics): in all my computer
simulations, any vote ties were broken randomly in such
a way that all tied contenders were equally likely to win.

Finally: the reader may wonder how it can be that all
the voting systems in the Monte Carlo study exhibited
nonzero regret even in two-candidate elections (where
they all, except for silly methods 13-15, reduce to major-
ity vote). The answer is that voter majorities (and the
Cordorcet winner CW) can be wrong! If 51% of the vot-
ers think A is better by 1 utility unit, while 49% think

B is better by 97 utility units, then majority vote will
elect the wrong candidate: A.

10.8 The effect of voter ignorance – equal and unequal

Steven J. Brams, after reading an earlier version of this
paper, worried that “range voting could work well with
well-informed voters. But I’m dubious about less in-
formed voters... half the electorate doesn’t know who
the vice president is.”

Meanwhile, only extremely well-informed voters in-
deed knew, for example, that President G.W.Bush, soon
after his election, would try to rescind rules requiring
mine-operators to post bonds to pay for repairing envi-
ronmental damage caused by that mine – or that Presi-
dent W.J.Clinton would involve himself in sex scandals.
Perhaps if voters had known these facts, it would have
perturbed their private mental utility values for these
candidates in various directions.

To try to address this, I modified my election simulator
to allow “ignorant voters.” As before, each voter has a
true utility for each election winner, and these true util-
ity values are used to assess the post-election Bayesian
regrets. But now, each voter does not know his own
candidate-election utilities; instead he knows a version
of these values polluted by the addition of ignorance, i.e.,
added noise. Specifically we add a Gaussian random de-
viate with mean 0 and standard deviation Q to every
mental utility value before that voter votes26. (If Q = 0
this reduces to the old, ignorance-free, version of the pro-
gram.)

As we’ve just described it, voters have identical prob-
ability distributions of their ignorance for all candidates.
But in practice, some candidates are better understood
by most voters than others. To model that, I made a fur-
ther modification of the simulator in which the Q value,
governing the width of the ignorance-perturbation, was
now candidate-dependent. Specifically Qj (the value for
candidate j) was now itself made a random variable uni-
form on [0, Q], chosen once per election.

I then re-ran all the V = 200 voter elections27 us-
ing both Q = 0.99 (a quite-large ignorance value) and
Q = 0.49, for both candidate-dependent and candidate-
independent ignorance. As a typical example of the re-
sulting data, I give the I = 0, Q = 0.99, Candidate-
independent-Ignorance case. (The statistical error for
each regret value is σ <∼ 1%.)

In every case (both in this Q = 0.99, I = 2 table,
as well as in all the tables with I 6= 3 or Q = 0.49 or
candidate-dependent ignorance not shown here), range
voting was still the best voting system, regretwise, for
either honest or strategic voters.

26Allowing non-zero means would have made no difference if
these means were all candidate-independent. If they themselves
were candidate-dependent (but identically distributed indepen-
dently sampled) random variables, then that would merely have
had the effect of making the statistical noise worse, without affect-
ing the relative rankings of the voting systems by expected regret.

27With (I, c) ∈ {0, 1, 2, 3, 4,∞}× {2, 3, 4, 5}.
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Random 0-1 Utilities. (0 issues.) Q=0.99. 200 voters.
Each candidate utility (for each voter)
normalized to lie somewhere in [0,1].
Each regret datapoint averages 499999 expts.
system|2 canddts 3 canddts 4 canddts 5 canddts
------+--------- --------- --------- ---------

0 | 1.78246 2.59671 3.12266 3.49234
1 | 1.78246 2.63211 3.17503 3.55450
2 | 1.78246 2.65583 3.21910 3.62039
3 | 1.78246 2.67760 3.26785 3.68912
4 | 1.78246 2.68080 3.27151 3.69833
5 | 1.78246 2.66878 3.23158 3.63670
6 | 1.78246 2.63211 3.23365 3.68527
7 | 1.78246 2.65211 3.20879 3.59620
8 | 1.78246 2.74216 3.30105 3.73183
9 | 1.78246 2.69074 3.33987 3.82141
10 | 1.78246 2.73779 3.38799 3.86082
11 | 1.78246 2.74216 3.39982 3.89144
12 | 1.78002 2.92934 3.68618 4.23271
13 | 2.25672 3.39143 4.11966 4.65564
14 | 2.31529 3.45491 4.21275 4.74960
15 | 4.60974 6.91339 8.40655 9.49843
16 | 1.78246 2.63539 3.21484 3.63070
17 | 1.78246 2.69523 3.28534 3.72672
18 | 1.78246 2.69523 3.28480 3.72029
19 | 1.78246 2.92934 3.68535 4.22196
20 | 1.78246 2.92934 3.55226 4.05111
21 | 1.78246 3.46370 4.19826 4.75376
22 | 1.78246 2.92810 3.67800 4.20765
23 | 1.78246 2.92934 3.68535 4.22196
24 | 1.78246 2.92810 3.61878 4.06401
25 | 1.78246 2.92810 3.68921 3.97279
26 | 1.78246 3.19770 3.94175 4.48897
27 | 1.78246 2.92810 3.68535 4.22196
28 | 1.78246 2.92810 3.66088 4.17900
29 | 1.78246 2.92810 3.67800 4.20765

Although the fact of range voting’s superiority seems to
remain unchanged in the presence of ignorance, many
other things are altered by Q = 0.99 ignorance:

1. Essentially every voting system now exhibits much
larger regret – up to 10 times larger.

2. The differences among voting systems (expressed as
regrets) are relatively much smaller. For example in
the table above, all regrets from non-silly systems
were within a factor of 1.3 of each other, whereas
without ignorance, the spread was a factor of 10.

These two trends also both are present to a lesser extent
in the Q = 0.49 data.

10.9 Which is the best?

It seems clear that range voting is experimentally best.
For either honest voters (systems #1-15) or strategic
ones (systems #14-29), range voting produces smaller
Bayesian regret, in all 144 election scenarios (with differ-
ent numbers of voters, candidates, and utility generating

methods) tried, and this is also true with either of 2 lev-
els, in 2 models, of artificially-induced voter “ignorance.”

There seem to be three possible avenues to try to in-
validate this conclusion:

1. If a large fraction of voters had somehow become
falsely convinced that honesty is the best voting
strategy in the Condorcet-LR system – but they
correctly understood Range voting strategy – then
since honest-CLR (#4) exhibits smaller (up to 30%
smaller) regret values than rational-Range (#18),
CLR would become the best system. This is conceiv-
able, since I myself once suffered from that delusion
about CLR (and also Hare STV)!

2. Since the best voting strategies for CLR and Hare-
STV are not known, it is conceiveable that, if in
future these true-rational strategies become known,
then redoing my computer study using voters using
these strategies, would entail lower regrets than Ra-
tional range voting. I tend to doubt that because
the strategies (#23, 22) I did test for these sys-
tems (“honesty except about the two frontrunners”)
seem likely to be more honest and hence less regret-
causing than whatever the true rational strategies
are. (I think the best chance for overthrowing Range
in this way would be in 3-candidate elections; see
open question #2 in §11.)

3. With future utility generating methods, perhaps the
relative regrets of the various voting systems might
change. The dominance of Range voting is so great
under my present utility generators, that its over-
throw seems unlikely, but it is possible. Since I have
made my computer program available on the web
(§10.5) it will be easy for others to plug in their own
utility generators to investigate this possibility.

Let me now discuss these in more detail.
Hare STV with honest voters (#4) also outperforms

(although only by 4-6%) strategic range voting #17 and
#18 in 3-candidate elections with 0 or∞ issues, although
both these range voting systems are superior for 1,2,3 and
4 issues. (With more candidates, Hare STV no longer
looks as competitive – with 5 candidates it always is in-
ferior to all 3 range voting strategies #16,17,18. Also,
strategy #16 for Range voting is always the best even
when c = 3.) So overall, the regret data prefers strate-
gic range voting over honest Hare STV. Because STV
voting also has severe algorithmic disadvantages versus
all additive voting systems28 and versus Condorcet (and
because honesty is not the best voter strategy in Hare
STV 3-candidate elections anyway), I think Hare STV
may safely be removed from contention for the title of
“best voting system.”

So the only contenders for the Title are Condorcet-LR
and Range – and CLR can only compete if the voters are
deluded.

28See discussion of Wk in §9.3; a close STV election among
a large number of candidates would be a nightmare for election
administrators dwarfing the Florida 2000 nightmare!
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But even if the voters are deluded about voting strat-
egy, for 3-candidate elections the question of whether
Range voting would be superior to Condorcet in practice
would hinge upon what percentage of range voters would
vote honestly or would use strategy #16 instead of #18
– since honest Range voting, and strategy-16 range vot-
ing, both are superior regret-wise even to honest-CLR.
(In practice I would expect voters would use some mix of
strategies, including both optimal and non-optimal ones,
and including honesty.) Range voting also has these ad-
vantages over CLR: it is simpler to explain, analyse, and
run, and it is superior (by larger margins than 30%!)
in the presence of enough honest (or strategy-16) voters,
and there is no looming uncertainty about what happens
in elections with c ≥ 4 candidates (where the best voter
strategy for Condorcet is unknown).

Either Range or Condorcet-LR is unquestionably bet-
ter than plurality (as good or better regret values in all
144 election scenarios tried).

11 Conclusion and Open problems

The main experimental contribution of this paper has
been the first utility-based large Monte Carlo compar-
ison of different voting systems – with the conclusion
that range voting utterly dominates all other systems
tried, both for honest and for strategic voters. Roughly:
range voting entails 3-10 times less regret than plural-
ity voting for honest, and 2.3-3.0 for strategic, voters.
Meanwhile strategic plurality voting in turn entails only
1.5-2.5 times less regret than simply picking a winner
randomly.

The main technical theoretical contribution of this pa-
per has been the notion of the “generic election” in the
limit V → ∞ of a large number V of voters, and the
recognition that it drastically simplifies voter-strategy
analysis, permitting characterization both of optimal
expected-utility voter strategies, and of “uniquely best”
voting systems.

The issues discussed in this paper are totally indepen-
dent of the puzzling question of how to allow accurate
and verifiable, yet cryptographically secure and (option-
ally) anonymous, voting, in which vote-buying is im-
possible. For the application of “zero knowledge proof
techniques” to resolve these apparently irreconciliable
desiderata, see the beautiful paper [19].

Neither will Range (nor Condorcet-LR) voting solve
such societal problems as unwise voters29 and innaccu-
rate vote tallying30.

29For example, R.M.Nixon was re-elected US president in 1972
by a “landslide:” he got 61% of the vote, the second highest per-
centage ever recorded. Essentially every voting system would have
declared him the winner. However, since Nixon then became the
only president to resign, with most of the key members of his cabi-
net jailed on corruption charges, most people now would agree this
was not the best possible decision.

30At present in the USA (judging by the results of numerous
contradictory vote recounts and re-recounts during the Gore-Bush
contest, cf. footnote 2) it seems to be impossible to run elec-
tions with expected fractional error below 10−3 or 10−4. Many

Open question #1: For what kinds of voting sys-
tems are pre-election polls capable of being reliable?
(“Bullet” voting, as we’ve seen in §8, seems to be a coun-
terexample, if there are a large number of rational voters
– there I called voting systems in which rational voters
will act to invalidate any pre-election poll claims, “suici-
dal.”)

Open question #2: Determine the best voter strat-
egy (in my model) in the Condorcet Least Reversal sys-
tem for an arbitrary number c of candidates. I suspect

would say that, really, even 10−3 is highly optimistic. For example
a 29 Dec 2000 New York Times article by David Stout indicated
that Gore’s nationwide popular vote lead over Bush had climbed to
539947 (versus the figure of 337000 widely reported in the month
after the election). This margin shift was ≈ 0.002 of the total
number V ≈ 105million of votes cast. The intense examination of
the Bush-Gore Florida contest cast some light on the difficulties in-
volved: (1) The number of ballots rejected as invalid in the Florida
2000 election (about 2.5% of the total votes cast; 3% is typical in
contemporary USA elections) exceeded Florida’s Bush-Gore mar-
gin of 537 votes by a factor of ≈ 300. The legal criteria for rejecting
ballots are vague. (2) The Bush-Gore margin also appeared to be
about 5 times smaller than the number of accidental mis-votes for
Buchanan in Palm Beach County, Florida [7]. (3) An examination
by The Miami Herald [22 Jan. 2001] uncovered over 2000 illegally-
cast ballots in Florida including felons, corpses, and double votes
(and there probably were far more) – exceeding the official Bush-
Gore margin by a factor of 4. It is impossible to tell for whom
these ballots were cast. This is important because it indicates that
determining the winner was actually mathematically impossible.
(6) The Miami Herald did optical scans of ballots in an attempt
to estimate how the Florida vote would have changed if there had
been a statewide hand recount (such recounts were blocked by the
US Supreme Court), and concluded that it would have led to a
Gore victory by about 23,000 votes. Other statistical studies were
conducted by USA Today, the Washington Post, and the Knight
Ridder News Service (and, according to press reports, by the Gore
and Bush teams themselves), all concluding a statewide recount
probably would have led to a Gore victory. This is mainly due
to the fact that the most pro-Gore counties had voting machines
of types which have relatively high rates of undercounting of bal-
lots. (For example, when 4695 Palm Beach [a Pro-Gore county]
ballots were hand tallied, 33 new votes were found for Gore and
14 for Bush. When 3892 ballots were hand-counted in Broward
[a pro-Bush county], 6 new votes were found.) (7) A consortium
including the New York Times, Wall Street Jorunal, Washington
Post, and Associated Press plans to recount the entire Florida elec-
tion by hand using various criteria for accepting ballots. The Post
on 27 Jan 2001 reported that an examination of computer files
of 2.7 million invalidated “overvotes” from Miami-Dade, Broward,
Palm Beach, Hillsborough, Pinellas, Marion, Highlands and Pasco
counties, showed that 46000 had Gore as one of the choices, while
17000 had Bush. So if these counties had employed “instant check”
voting machines allowing voters to instantly detect and correct il-
legal overvoted ballots, presumably Gore would have won by about
28000. (8) A joint USA Today-Miami Herald study of 10644 “un-
dervotes” from Miami-Dade, Broward, Palm Beach, and Volusia
(the 4 counties where the Gore or Bush campaigns had asked for
recounts, in an attempt later blocked by the US Supreme Court)
indicated those recounts would have produced a net gain of ≤ 49
votes for Gore, not enough to overcome Bush’s 537-vote lead. Sub-
stantial differences in vote totals (> 100-vote swings in Miami-
Dade county alone) would have been caused by using “dimpled
chads,” “hanging chads,” or “penetration” as one’s criterion for
voter intent on punched card ballots [USA Today, front page, 26
Feb 2001]. But this was contradicted by a January 27 Palm Beach
Post recount of 4513 uncounted votes in Palm Beach yielding a net
gain of 682 votes for Gore, enough for a Gore victory. (9) Demo-
cratic party lawyers collected over 20,000 affadavits from Florida
voters claiming that their votes had in various ways been denied or
impeded. (E.g. black people carpooling to polling places stopped
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this should be possible using a similar analysis to mine,
but involving Gaussian distributions and decision sur-
faces in a (c − 1)c/2-dimensional space rather than a
c-dimensional space. Use this understanding to redo the
computer simulation comparing CLR to strategic range
voting.

Open question #3: How can this generic/rational
picture be extended to try to find uniquely best systems
for electing w winners chosen from among c candidates
for general w, 1 ≤ w < c (possibly with w 6= 1), where
each voter has

(
c
w

)
utility values in mind, one for each

of the possible election results? What about if those
(
c
w

)
utilities just arise as sums of only w out of cmental utility
values? I think the ideas in the present paper will be a
key part of the answer to this question, but considerably
more work will be needed.
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